

Make:

Jody Culkin and Eric Hagan

An Illustrated Beginner’s Guide to Physical Computing

Learn Electronics
with Arduino

Copyright © 2017 Jody Culkin and Eric Hagan. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1700 Montgomery Street, Suite 240,
San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (safaribooksonline.com).
For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Publisher and Editor: Roger Stewart
Copy Editor: Elizabeth Welch, Happenstance Type-O-Rama
Proofreader: Scout Festa, Happenstance Type-O-Rama
Interior Designer, Compositor, and Cover Designer: Maureen Forys,
Happenstance Type-O-Rama
Indexer: Valerie Perry, Happenstance Type-O-Rama

August 2017: First Edition

Revision History for the First Edition
28-08-2017 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680453744 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media,
Inc. The Maker Media logo is a trademark of Maker Media, Inc. An Illustrated Begin-
ner’s Guide to Physical Computing and related trade dress are trademarks of
Maker Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this book, and Maker Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. While the publisher and the
author have used good faith efforts to ensure that the information and instruc-
tions contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information
and instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source licenses
or the intellectual property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

9-781-68045-374-4

mailto:corporate@oreilly.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781680453744

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business. Technology professionals, software developers, web designers, and busi-
ness and creative professionals use Safari Books Online as their primary resource
for research, problem solving, learning, and certification training. Safari Books
Online offers a range of plans and pricing for enterprise, government, education,
and individuals. Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from publishers like
O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hun-
dreds more. For more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media
1700 Montgomery St.
Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at books@makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community of
resourceful people who undertake amazing projects in their backyards, basements,
and garages. Maker Media celebrates your right to tweak, hack, and bend any Tech-
nology to your will. The Maker Media audience continues to be a growing culture and
community that believes in bettering ourselves, our environment, our educational
system—our entire world. This is much more than an audience, it’s a worldwide
movement that Maker Media is leading. We call it the Maker Movement.

To learn more about Make: visit us at makezine.com. You can learn more about the
company at the following websites:

Maker Media: makermedia.com

Maker Faire: makerfaire.com

Maker Shed: makershed.com

mailto:books@makermedia.com
http://makezine.com
http://makermedia.com
http://makerfaire.com
http://makershed.com

Dedication

Dedicated to all of our students, past, present, and future. Their
curiosity drives them and inspires us.

iv

Contents

Acknowledgments	 vii

About the Authors 	 viii

Preface	 ix

1	 Introduction to Arduino	 1
Physical Computing	 3
Prototyping	 3
What Will I Need and Where

Can I Get It?	 4
Parts and Tools	 5
Resources	 12
Summary	 13

2	 Your Arduino	 15
Parts of an Arduino	 16
Plug Your Arduino into Your

Computer	 20
Components and Tools	 26
Summary 	 30

3	 Meet the Circuit	 31
The Circuit: Building Block of

Electronics	 32
The Schematic	 37
Using a Breadboard	 42
Building a Circuit	 48
A Look at the Battery	 52
Power for Our Circuit: Electricity	 55
Debugging the Circuit	 57
The Multimeter	 60
Using the Multimeter	 65

Back to Debugging Our Circuit	 69
Summary	 71

4	 Programming the Arduino	 73
Arduino, Circuits, and Code:

Bringing Everything Together	 74
What’s an IDE?	 75
Downloading the Arduino IDE:

Getting Started	 78
The Sketch: The Basic Unit of

Arduino Programming	 90
Debugging: What to Do if the

LED Isn’t Blinking	 96
LEA4_Blink Sketch: An Overview	 98
setup() and loop(): The Guts of

Your Code	 101
Looking at loop(): What Happens

Over and Over	 109
A Schematic of the Arduino	 115
Building the Basic Circuit	 118
SOS Signal Light: Creating More

Complex Timing	 125
Summary	 135

5	 Electricity and Metering	 137
Understanding Electricity	 138
Build the Circuit Step by Step	 140
Electricity: An Overview	 144
Understanding Electricity:

The Water Tank Analogy	 148
Voltage: The Potential	 149
Current: The Flow	 159

﻿ v

Resistance: Restricting the Flow	 167
Voltage, Current, Resistance:

Review	 173
How Do Voltage, Current, and

Resistance Interact? Ohm’s Law	 177
Components in Parallel and Series	 180
Summary	 192

6	 Switches, LEDs, and More	 193
Interactivity!	 194
Digital Inputs and Outputs

Overview	 195
Digital Input: Add a Button	 197
Looking at the Sketch: Variables	 206
Digital Input Refresher	 213
Looking at the Sketch: Conditional

Statements	 215
Add a Speaker and Adjust

the Code	 220
Add Two More Buttons and

Adjust the Code	 227
Reviewing Electronic and Code

Concepts	 236
Summary	 239

7	 Analog Values	 241
There’s More to Life than On

and Off!	 241
Potentiometer Circuit, Step

by Step	 246
The LEA7_AnalogInOutSerial

Sketch	 254
Analog Input: Values from the

Potentiometer	 259
Analog Values as Output: PWM	 266

Serial Communication 	 269
Adding the Speaker	 278
Adding the Photoresistor	 282
Summary	 288

8	 Servo Motors	 289
Waving the Flags	 291
Servos Up Close	 292
Building the Servo Circuit

Step by Step	 295
LEA8_Sweep Overview	 301
What’s a for Loop?	 304
Operators	 309
The for Loop in the Sketch	 312
Add Interactivity:

Turn the Flag	 314
LEA8_Knob Explained	 317
Two Flags Waving: Add a

Second Servo Motor	 320
LEA8_2_servos, First Look	 322
Summary	 332

9	 Building Your Projects	 333
Project Management	 334
A Few Helpful Components	 338
Types of Projects	 342
Other Versions of the Arduino

Board	 345
Document Your Project and

Share It!	 348
Summary	 350

A	�Appendix: Reading
Resistor Codes	 351
Identifying Resistors by Color Bands	 351

vi

Acknowledgments

This book wouldn’t have been possible without the help of many
people, more than we can mention here. We’d like to thank our tech
editor, Anna Pinkas, for her tireless and thorough review of this text.
An earlier version of this book also benefited from tech editing by
Michael Colombo and Sharon Cichelli. Roger Stewart, our publisher
and editor, has been supportive and helpful throughout the process
of getting this book into print. Our production team from Happen-
stance Type-O-Rama has been a delight to work with, particularly
Liz Welch and Maureen Forys. We met at the Interactive Telecom-
munications Program at New York University, and we will always be
grateful to Tom Igoe for suggesting we work together on a project
there. In fact, we’d like to thank all of the faculty and staff at ITP,
especially Dan O’Sullivan and Marianne Petit.

Eric would like to thank his wife Marie for her endless support,
without which this book would not be possible. He would also like to
thank his parents, David and Tracey, who have always had so much
faith in his work.

Jody would like to thank her husband Calvin Reid, who seems to
think she can do anything and has done whatever he can to make
that possible. And she would like to acknowledge the memory of her
parents, Florence and Hosmer Culkin, who would be startled but
proud that she has co-authored a book on technology.

vii

About the Authors

Jody Culkin is an artist and teacher. She has shown her sculptures,
photographs, and installations at museums and galleries through-
out this country and internationally. She illustrated How to Use a
Breadboard, written by Sean Ragan, for Maker Media (2017). Her
comic Arduino! has been translated into 12 languages. She has
received grants and awards from the National Science Foundation,
the New York State Council on the Arts, and many other organiza-
tions. She is currently a professor at City University of New York's
Borough of Manhattan Community College in the Media Arts and
Technology Department. She has a BA from Harvard University in
visual studies and an MPS from NYU's Interactive Telecommunica-
tions Program.

Eric Hagan is an interactive and kinetic artist and professor based
out of Astoria, New York. He has written articles for publications,
including Make: magazine and Popular Science. He has also worked
on several art installation projects around New York City, includ-
ing the annual holiday windows on 5th Avenue and Kara Walker’s
A Subtlety. He is currently an assistant professor at SUNY Old
Westbury in the Visual Arts Department. He has a BA from Duke
University in philosophy and an MPS from NYU's Interactive Tele-
communications Program. Eric enjoys showing projects at the
annual New York City World Maker Faire.

viii

Preface

We conceived of this book as an introduction to electronics and
the Arduino platform for the complete beginner. We have written
and illustrated it assuming that the reader has no prior knowledge
of either electronics or programming. As the reader progresses
through the book, electronics and programming concepts are thor-
oughly explained, in text and with images. After the reader has com-
pleted the book, they will be able to use it as a reference for basic
electronics and Arduino programming.

This book should be the jumping-off point for creative projects.
When finished reading the book and completing all the exercises in
it, readers should be equipped to start developing their own proj-
ects. We haven’t covered everything that the Arduino can do, but we
have set readers on their way to finding that out for themselves.

Many of the code sketches used in this book are taken from the
examples in the Arduino IDE. The other sketches are available here:
github.com/arduinotogo/LEA.

ix

http://github.com/arduinotogo/LEA

Perhaps you have seen the Arduino at a local retailer,
heard about it from a friend who purchased one, or

just saw a cool project on the Internet that piqued your
interest. What is the Arduino? Most simply, it is an afford-
able, small-scale, simple computer that focuses on inter-
action with the outside world (Figure 1.1).

Most of the computers you are familiar with are con-
trolled almost exclusively through the keyboard and
mouse, touchscreen, or trackpad. An Arduino allows you
to take information from the outside world with sensors
that measure temperature, light and sound levels, or
even the vibrations underneath your feet, and convert
these measurements into motion, sound, light, and more.

Figure 1.1: The Arduino logo

Introduction
to Arduino 1

Learn Electronics with Arduino2

The Arduino was originally developed by teachers to make it
possible for their design students who were not engineers to create
interactive objects and environments. Since the original Arduino
was released in 2005, it is estimated that over 1 million have been
sold. Designers, educators, engineers, hobbyists, and students have
built all kinds of projects that sense and respond to the world with
Arduino.

There are many versions of the Arduino, and each is designed for
a specific function. Figure 1.2 shows a few of the Arduino boards.

We have written this book in the spirit of the Arduino team. We
don’t assume that you already know programming or electronics—
we will show you what you need to know to get up and running with
the Arduino. It will help if you are good at building and tinkering, and
you have a determined nature.

Arduino Uno

Arduino YÚNArduino 101

Arduino Lilypad

Figure 1.2: There are many versions of the Arduino, each designed for a different
function.

Introduction to Arduino 3

Physical Computing
The Arduino is used for building physical computing projects.
What does that mean? Physical computing refers to taking infor-
mation from the world around us by using inputs such as sensors
and switches and responding to that information with outputs of
some kind. It could be as simple as turning on an LED when a room
gets dark, or it could be a complex system of sound and light that
responds to the position of a person in a room. An Arduino can act
as the “brains” of this kind of a system, handling the information
coming in and the response going out.

The Arduino is part of the open source hardware movement. Let’s
look at what that means.

What Is Open Source Hardware?
The Arduino is defined on its website as an open source electron-
ics prototyping platform. In the open source hardware movement,
technologists share their hardware and software to foster devel-
opment of new projects and ideas. Source designs are shared in
a format that can be modified, and whenever possible, readily
available materials and open source tools are used to create the
designs.

By encouraging the sharing of resources, the open source hard-
ware movement facilitates development of new products and
designs. Open source projects emphasize the importance of doc-
umentation and sharing, making the community of users a great
resource for learners.

Prototyping
The Arduino is a prototyping platform. What’s prototyping? It is
building a model of a system. It can involve many phases, from initial

Learn Electronics with Arduino4

sketches through detailed plans and a series of refinements, to
building a fully functional model that can be replicated. Or it can be
a quick one-off that’s put together rapidly to test an idea.

What Will I Need and
Where Can I Get It?
There are several versions of the Arduino; it has been around since
2005 and is constantly evolving. For the purpose of this book, we are
concerned with the Arduino Uno. Your Arduino might not look exactly
like the Uno shown in Figure 1.3, because we have simplified the
drawing in order to point out the sections that concern us. Since the
Arduino is open source, you might also purchase a board that does
not come directly from the Arduino organization. Just know that for
this book we are focused on the Arduino Uno and compatible boards.

M A D E I N I TA LY

ARDUINO

POWER ANALOG IN

DIGITAL (PWM~)

UNO- +

RE
SE

T
IO

RE
F

3.
3V

5V GND Vi
n

A0 A1

A2

A3

A4

A5

ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10 ~
9

 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

RE
SE

T

ICSP

.A
R

D
U

IN
O

.C
C

L

Here’s your first look at the Arduino Uno.

Figure 1.3: The Arduino Uno

Introduction to Arduino 5

Parts and Tools
We will also need some additional electronic parts and a few tools
to build projects with the Arduino. Here is a list of the parts you will
need to purchase to complete the projects in this book. We’ll give
you more detail about the parts and what they do as we build each
project.

Parts List
▨▨ Breadboard

▨▨ USB A-B cable

▨▨ 9-volt battery

▨▨ 9–12-volt power
supply

▨▨ 9-volt battery cap or
holder

▨▨ Assorted LEDs, a variety
of colors

▨▨ Assorted resistors

▨▨ 10K potentiometer

▨▨ 3 momentary
switches/buttons

▨▨ Photoresistor

▨▨ Speaker, 8 ohm

▨▨ 2 servo motors

▨▨ Jumper wires

The next few figures, Figure 1.4 through Figure 1.16, show you
what the parts look like, along with a brief description. Electronic
parts are often called components, because they are components
in an electronic circuit. You’ll learn more about circuits in Chapter 3,
“Meet the Circuit.”

A breadboard, shown in Figure 1.4, is used to build and test cir-
cuits quickly. A USB A-B cable, shown in Figure 1.5, connects the
Arduino to a computer so you can program it. It will also provide
power. A 9-volt battery, shown in Figure 1.6, can provide power
when the Arduino is not attached to a computer.

Learn Electronics with Arduino6

Figure 1.4: Breadboard

Figure 1.5: USB A-B cable

The battery cap, shown in Figure 1.7, will be used to attach a bat-
tery to a breadboard. The power adapter, shown in Figure 1.8, can
power your Arduino when it is
not attached to your computer.
Light-emitting diodes (LEDs),
shown in Figure 1.9, emit light
when a voltage is applied.

Figure 1.6: 9-volt battery

Figure 1.7: Battery cap

Introduction to Arduino 7

Figure 1.8: Power adapter

Resistors, as you can see in Figure 1.10, limit the flow of current
in a circuit. We will use a momentary pushbutton, shown in Fig-
ure 1.11, to make or break a connection in a circuit. Figure 1.12 shows
a potentiometer, a variable resistor.

Figure 1.10: Resistors

A photoresistor, shown in Figure 1.13,
changes its resistance when exposed to dif-
ferent levels of light. Figure 1.14 shows an
8-ohm speaker, which will play audio signals.
The servo motor is an easily controlled hobby
motor, as you can see in Figure 1.15. Jumper
wires, shown in Figure 1.16, are used to con-
nect components in a breadboard. You can
buy them or make them yourselves with wire
strippers.

Figure 1.9: LEDs

Figure 1.11:
Momentary pushbutton

Figure 1.12:
Potentiometer

Learn Electronics with Arduino8

Figure 1.13: Photoresistor

Figure 1.15: Servo motor

A Note about LEDs
LEDs come in a variety of colors, styles, and sizes. We will use LEDs
in many of the projects in this book because they help demonstrate
a number of basic electronics and Arduino concepts in a visual way.

One important thing to remember about LEDs is that they have
a polarity, or direction in which they must be placed in order to work
in a project. If we place the LEDs backward, they won’t light up. How
do we know the orientation of an LED?

LEDs have two legs, or leads, which are different lengths, as
you can see in Figure 1.17. The longer lead is known as the anode,
the side of the LED that we will connect to power. The shorter leg
is called the cathode, which will be pointed away from our power
source. We’ll show you how to position the leads in a circuit when
we start building one, and we’ll always remind you of the polarity in
later circuits.

Figure 1.14: Speaker, 8 ohm

Figure 1.16: Jumper wires

Introduction to Arduino 9

Note If you place the LED in backward, it won’t light up but it also
won’t damage anything in your project.

What happens if you have
a used LED that has clipped
leads? In many LEDs, if you feel
the bulb, one side of the rim
at the bottom of the bulb feels
flatter. The lead connected to
that side is the cathode, or neg-
ative side.

Now let’s take a look at a
few tools you will need to make
these projects.

Tools
A multimeter will tell you every-
thing you need to know about
the electrical properties of a
circuit, properties that are not
necessarily visible to your eye.
We will show you how to use it,
starting in Chapter 2. The mul-
timeter depicted in Figure 1.18
is available from SparkFun
(part number TOL-12966), but
you may find another one that
you like. When you choose a
multimeter, make sure it is dig-
ital and has removable leads,
and that it is fused.

anode
long lead
attaches
to power

cathode
short lead

Figure 1.17: Anode (positive lead) and
cathode (negative lead) of an LED

Figure 1.18: Multimeter

Learn Electronics with Arduino10

Needle-nose pliers, as shown in Figure 1.19, come in handy for
pulling components out of the breadboard when you wish to make
changes to a circuit. They are also helpful for picking up small
components.

Wire strippers, pictured in Figure 1.20, are used to pull off the
plastic insulating coating found on various thicknesses of wire. They
will make your life a lot easier when using spools of wire, since you
will be able to cut and use custom lengths of wire.

Figure 1.19: Needle-nose pliers

Tip Although you can buy precut jumper wires, remember that
you can create your own by using your wire strippers to strip off the
plastic coating on the ends of a segment of wire. Twenty-two-gauge
hookup wire works well in breadboards.

A Word about Tools: The Soldering Iron
You may be familiar with a soldering iron and its use in electronics to
connect components. In this book we have elected to use a bread-
board to make connections in all the circuits listed. This means that
you are not required to purchase a soldering iron or learn how to
use one to complete the projects in this book.

Figure 1.20: Wire strippers

Introduction to Arduino 11

QUESTIONS?
Q: What does a soldering iron do?

A: A soldering iron is used to melt a conductive material (“solder”) to
combine electrical components in a permanent way. This process is
called soldering.

Q: Why aren’t you teaching soldering in this book?

A: Soldering is a wonderful skill to have and will help you take your
electronics to the next level, but for this book we were primarily con-
cerned with the basics. You can make fully functional circuits without it.

Q: The list of components seems to have a lot of parts to it. The pictures
look nice, but do I really need to purchase all the items in that list?

A: You will be seeing a lot more of those pictures! To answer your
question, you will be using all of those parts when you build the
projects in this book. These parts can also be reused for your own
projects. We will explain what all of these parts do as we use them.

Q: My friend/sibling/parent/teacher/dog gave me a newer/older
model of the Arduino. Do I have to use the Arduino Uno for the pro
jects in this book?

A: Good question. The projects in the book might work with your
particular Arduino, but both the programming and the abilities of the
Arduino have changed over time and differ based on the version. All
of the examples in this book have been tested using the Arduino Uno
and the latest release of the Arduino software.

Q: I don’t recognize or know how to use any of the tools or compo-
nents you have shown; is there another book for me?

A: No! This book is written for you. We will be covering specifics on
how to use all of the parts and tools we have listed in the coming
chapters. Sit tight and keep reading.

Q: I don’t have anywhere in my neighborhood to purchase those
parts. Do you have any recommendations for places I can find those
parts online?

A: Great question! You are ready for the next section.

Learn Electronics with Arduino12

Resources
A number of vendors sell the components that you will need. Here
are the URLs of the websites of many of them, and there may be
brick-and-mortar stores or other resources in your community.

Maker Shed (makershed.com)

Selection of kits and individual Arduino com-
ponents. Some electronic parts, focused on the
Maker community.

SparkFun Electronics (sparkfun.com)

Wide range of sensors and breakout boards,
classic Arduinos and their homemade version.

Adafruit Industries (adafruit.com)

Arduinos and breakout boards, sensors, electronic components.

Jameco Electronics (jameco.com)

Mostly electronics components, endless but-
tons and switches.

Mouser Electronics (mouser.com)

Some Arduino, tons of electronics, sensors, and
other items.

Digi-Key Electronics (digikey.com)

Great for ordering components, chips, and so on.

Micro Center (microcenter.com)

A source of components and Arduinos,
they have some brick-and mortar-stores
as well as a website.

Introduction to Arduino 13

Kits
Kits are available from some of the vendors mentioned here that
have most of the parts you will need to complete the projects. We
will review exactly what you need to build the projects in every chap-
ter. Here are a few of the kits available; you will find that there are
many more.

▨▨ A kit developed by the Arduino team (arduino.cc/en/Main/
ArduinoStarterKit). It can be purchased from a number of
vendors.

▨▨ This kit is available from the Maker Shed: makershed.com/
products/make-getting-started-with-arduino-kit-special-edition

▨▨ Adafruit Industries has a few kits, including this one: adafruit.com/
products/193

Summary
This chapter set you on the path to using your Arduino. By now you
know where to get the required items, you can identify various com-
ponents and tools you will use, and you know something about the
contributions of the open source movement.

The next chapter will look at the Arduino Uno in more detail and
show you how to hook it up to your computer.

Now that you’ve got your Arduino and a number of
parts and tools, let’s look at them in more depth. The

Arduino is just the thing to solve your everyday interac-
tive needs. In this chapter, you’ll learn about the parts of
the Arduino and how to attach it to a computer and to a
power supply. We will also look at unboxing our electronic
parts, sorting them out, and learning more about them on
both websites and data sheets.

Your Arduino 2

Learn Electronics with Arduino16

Parts of an Arduino
First let’s take a look at the labeled parts of the board, as shown in
Figure 2.1.

M A D E I N I TA LY

ARDUINO

POWER ANALOG IN

DIGITAL (PWM~)

UNO- +

RE
SE

T
IO

RE
F

3.
3V

5V GND Vi
n

A0 A1

A2

A3

A4

A5

ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10 ~
9

 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

RE
SE

T

ICSP

.A
R

D
U

IN
O

.C
C

L

reset button built-in LEDs input and output pins

power and ground pins analog pins

USB port

voltage regulator

power port

on indicator
LED

Figure 2.1: The Arduino Uno

We are going to break down each side of the board in more
detail so you can see where everything important is located on the
Arduino.

Arduino in Detail
Let’s learn a bit more about what is on the Arduino board. Remem-
ber that there are different styles of boards, so yours may look
slightly different. These figures are based on Arduino Uno revision 3.
We’ll look first at the left side of the board, with the reset button,
USB port, voltage regulator, and power port, as shown in Figure 2.2.

Your Arduino 17

RE
SE

T

reset button

USB port

voltage regulator

power port

Figure 2.2: The left side of the Arduino Uno board

Reset Button

Much like turning your computer off and on again, some problems
with the Arduino can be solved by pushing the reset button. This
button will restart the code currently uploaded on your Arduino. The
reset button may be in a different location on your board than in
Figure 2.2, but it is the only button.

USB Port

The USB port takes a standard A-to-B USB cable, often seen on
printers or other computer peripherals. The USB port serves two
purposes: First, it is the cable connection to a computer that allows
you to program the board. Second, the USB cord will provide power
for the Arduino if you’re not using the power port.

Learn Electronics with Arduino18

Voltage Regulator

The voltage regulator converts power plugged into the power port
into the 5 volts and 1 amp standard used by the Arduino. Be careful!
This component gets very hot.

Power Port

The power port includes a barrel-style connector that connects to
power straight from a wall source (often called a wall-wart) or from
a battery. This power is used instead of the USB cable. The Arduino
can take a wide range of voltages (5V–0V DC) but will be damaged
if power higher than that is connected.

We’ll take a closer look at the other side of the board now (Fig-
ure 2.3), which includes the digital, analog, and power pins as well
as the actual chip for the board.

M A D E I N I TA LY

ARDUINO

POWER ANALOG IN

DIGITAL (PWM~)

UNO- +

RE
SE

T
IO

RE
F

3.
3V

5V GND Vi
n

A0 A1

A2

A3

A4

A5

ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10 ~
9

 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

ICSP

.A
R

D
U

IN
O

.C
C

L
on indicator
LED

built-in LEDs digital input and output pins

power and ground pins analog pins

ATmega328P, black chip

tx and rx pins

Figure 2.3: The right side of the Arduino Uno

Your Arduino 19

Built-In LEDs

The LEDS marked TX and RX show whether your Arduino is sending
or receiving data. The one marked L is connected to Pin 13.

ON Indicator LED

This LED indicates that the Arduino is getting power when you turn it on.

Digital I/O Pins

The holes on this side of the board are called the digital input/out-
put pins. They are used to either sense the outside world (input) or
control lights, sounds, or motors (output).

TX/RX Pins

Pin 0 and Pin 1 are special pins labeled TX and RX. We will cover this
in more detail later, but it is good practice to leave these pins empty.
Any changes you make to your program won’t load if something is
plugged into Pin 0.

ATmega328P, Black Chip

The black chip in the middle of the board is an ATmega328P. This
is the “brains” of the Arduino: it interprets both the inputs/outputs
and the programming code uploaded onto your Arduino. The other
components on the board enable you to communicate with this chip
when creating projects.

Power and Ground Pins

Pins related to power are located here. You can use these pins to
run power from your Arduino to your breadboard circuit.

Analog Pins

These pins take sensor readings in a range of values (analog), rather
than just sending whether something is just on or off (digital).

Learn Electronics with Arduino20

Now let’s connect the Arduino to your computer. We’re not going
to program it just yet, but it will help to see how to attach it to the
computer via the USB cable.

Plug Your Arduino into
Your Computer
You’ll need a USB A-B cable, your computer, and an Arduino Uno. If
you have a newer MacBook model, you may also need a USB-C-to-
USB adapter.

Figure 2.4: Connect your Arduino to your computer.

First, plug the USB cable into one
of your computer’s USB ports as
shown in Figure 2.4. Any port that
is available, as shown in Figure 2.5,
should work fine.

Now that you are attached to the
computer, plug the USB cable into the
USB port on the Arduino. The USB
port is labeled in Figure 2.6.

Figure 2.5: Close-up USB port

Your Arduino 21

USB port

Figure 2.6: USB port on the Arduino

You can see the top view of the USB port on the Arduino with the
USB A-B cable in Figure 2.7.

TX
RX

AR
EF

RE
SE

T

Figure 2.7: Top view of plugging USB cable into Arduino

Learn Electronics with Arduino22

Plugging In the Arduino
What happens when you plug in the Arduino? The power LED
labeled ON should light up. And if this is the first time you’ve plugged
it in, the LED on the Arduino near Pin 13 should blink on and off, as
shown in Figure 2.8.

ARDUINO

DIGITAL (PWM~)

UNO- + ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10

 ~

9
 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

ICSP

L

Arduino attached
to computer

detail of Arduino
board

with LEDs lit

blinking LED

power LED

Figure 2.8: The LEDs turn on when the Arduino gets power from your computer.

You’ve Powered Up Your Arduino for the First Time!

You can always use a USB cable and a port on your computer to
power the Arduino. The Arduino can also be powered by attaching it
to a power supply that’s plugged into a wall outlet.

Your Arduino 23

Note The Arduino can be powered off the USB port or the
power port.

Powering the Arduino from a
Power Supply
You will need a 9–12V DC power supply and an Arduino. The first
step is to unplug the USB cable, which will completely power down
the Arduino. Figure 2.9 shows the power port on the Arduino.

Warning Always unplug the Arduino from a power source when-
ever you are making any changes!

power port

Figure 2.9: Power port on the Arduino

Learn Electronics with Arduino24

Attach the power supply to the power port on the Arduino
(Figure 2.10).

RE
SE

T

power port

Figure 2.10: Top view of the power port on the Arduino

Next, plug your power supply into a surge protector, and then into
a wall outlet, as shown in Figure 2.11.

What happens now? It should be just the same as when you
attached the Arduino to your computer with the USB cable: the LED
labeled ON indicates that the Arduino has power. And if your Ardu-
ino is straight out of the box, the LED near Pin 13 will start blinking,
as seen in Figure 2.12.

Your Arduino 25

Figure 2.11: Plug your power supply into a surge protector.

ARDUINO

DIGITAL (PWM~)

UNO- + ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10

 ~

9
 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

ICSP

L

blinking led power led

Figure 2.12: LEDs blinking on the Arduino

Learn Electronics with Arduino26

Now you know the two methods of powering an Arduino. You can
switch your power source as your project evolves—you’re not stuck
using one or the other.

Components and Tools
Now that you have purchased the components in the parts list (Fig-
ure 2.13), you may wish to learn more about the individual pieces.
Several different types of resources are available that can help you
figure out which parts to use and where to put them.

What are all these things again?
Where can I find information on them?

Figure 2.13: Where do I find information about my components?

Sorting Your Parts
The best thing to do when unboxing all your parts is to separate
them by type. It’s nice to have all of your resistors in a separate
place from your LEDs, or even to have separate places for different
LED colors and for resistors of different values. Most hardware or
craft supply stores sell plastic boxes that will make it easy to sort

Your Arduino 27

out the parts and find them when you need them later on. We rec-
ommend something that looks like the box shown in Figure 2.14.

parts box
parts box top view
filled with some components

Figure 2.14: Sorting all of your components will also help you get familiar with
them.

Part Numbers and Store Guides
Now that you have your parts separated out and can identify what
they are, where should you look to find out information about them?
The very first place to check for information about components is
the components themselves. Resistors, LEDs, and most other com-
ponents look different enough that you will quickly learn how to
identify them. Often, components will have a part number listed on
them somewhere, which can help you find a supplier’s or manufac-
turer’s website. When you order components or a kit, the store will
also send along documentation or point you to a page on their web-
site. Always check a part supplier’s website first and save yourself a
headache.

Learn Electronics with Arduino28

Finding More Info: Data Sheets
If you can’t find the information you are looking for either on the
component or on the website, the next thing to look for is your com-
ponent’s data sheet. You can find it by entering the part number,
followed by “data sheet,” in your favorite search engine online. Do
not search for just the part name, since chances are there are many
different versions of your part online with different information. For
example, there are a lot of different LEDs!

Electronic data sheets document the behavior, function, and
limitations of electronic components. They have a tremendous
amount of information, from operating temperature and behavior
and suggested wiring diagrams, to material makeup and industrial
application.

For example, here’s how to find a data sheet online for one of
your LEDs.

	 1.	Find the number that identifies the LED on your invoice from the
supplier you purchased your parts from. If you can’t find one, use
this one for red superbright LEDs: WP7113SRD.

	2.	Open a browser and type the number of your part into your
favorite search engine, as well as the words “data sheet.” If
you use our example part number, your search terms will be
“WP7113SRD data sheet.”

	3.	Your search results will include data sheets about your part,
often in the form of PDFs. Choose a couple of the links and click
on them. Take a look at the results and make sure they approxi-
mately match the part number you searched for.

It can often be overwhelming to sift through the data sheet to
find the one bit of information that you need, but data sheets come
in handy, particularly when you are not sure what components you

Your Arduino 29

are handling. Let’s start by looking at a sample sheet, as shown in
Figure 2.15.

LED WP7113SRD
(found on a shelf)

Features:
 - Lights up
 - Turns power into light
 - You can put them on everything
 -Available in various colors

Parameter Symbol Rating Unit

Power dissipation

Reverse Voltage Vr

Ifp

If

Pd

Toper

80 mW

mA

mA

V

150

30

-40ºC~80ºC

5

Operating Temperature

Forward Current

Peak Forward Current

list of features
specific to your

component

statistics about
your component,
what units are

used, and under
what conditions
those statistics

apply

name or part
number for your
component

precise drawing of
component, multi-
ple views and
sometimes related
components

Figure 2.15: Data sheet for LED found on a shelf

 Your data sheet contains a lot of parts, and not all of the techni-
cal information will matter for your project—but it can help you if you
get stuck.

Learn Electronics with Arduino30

Summary
You should now feel comfortable with the layout of your Arduino. You
know how to power up the Arduino from the USB and the power ports.
If you are ever unsure about your components, you know you can look
them up online from the website where you purchased them or search
for their data sheet. In the next chapter, we are going to take a look at
using a few components to build our first circuit.

In the last chapter, you learned a bit about the Arduino
and its parts. You were also introduced to some of the

components and tools you’ll be using to complete the
projects in this book. In this chapter, you’ll learn some of
the electronics practice and theory you’ll need to know
to build circuits using the Arduino. We won’t be using an
Arduino just yet, but we’ll get back to that shortly.

Meet the
Circuit 3

Learn Electronics with Arduino32

The Circuit: Building Block
of Electronics
The circuit is the basic building block for all of the electronics projects
we’ll be building with the Arduino.

You can build many different types of projects with an Arduino—you
are limited only by your imagination. Although many different types of
projects exist, all the projects in this book are built using circuits.

First, we’ll look at what a circuit is; then you’ll build your first cir-
cuit. We’ll also look at techniques for representing electronic circuits
visually and show you how to test your circuits.

Figure 3.1 illustrates a few Arduino projects. You can see that the
circuits in these projects take different forms. In the cardboard robot,
you can’t see the circuit, but that is what is controlling the robot.

photoresistor and speaker circuit

flag-waving motor circuit cardboard robot

Figure 3.1: Some examples of projects that use the Arduino as part of a circuit

Meet the Circuit 33

Let’s look more closely at what a circuit is.

What Is a Circuit?
If you’ve ever been to a car race, you know that they refer to the
track as a circuit. A circuit just means that there is a completed
closed loop, as shown in the circuits in Figure 3.2. The cars pass
from the start line and end at the same place.

No matter how complicated, a circuit track
starts and ends at the same point.

Figure 3.2: Circuit tracks

The same is true for electronic circuits. An electronic circuit
describes a complete and closed loop. A circuit includes all of
the electronic components required for a task as well as wires or
another material that will let the electricity flow between the con-
nected components, as you can see in Figure 3.3.

+ -

Figure 3.3: The flow of the circuit starts and ends with the power source.

Learn Electronics with Arduino34

Why Are We Making Circuits?
Think for a moment about the light switches in your home as a
model. To turn a switch on or off, you must be in physical contact
with the switch. In our projects, the Arduino will control the behav-
ior of the electronic components. Our electronic components will be
arranged in a circuit, and the Arduino must be part of that circuit in
order for it to control the behavior.

Circuits allow the Arduino to connect to the electrical com-
ponents, turning off and on a variety of objects (speakers, LEDs,
motors, etc.) or taking information from the outside world (“How hot
is it?”; “Is the switch on?”; etc.). As long as we figure out how to have
the Arduino connect to the object, we can control it with electricity
and, later, programming.

What Makes Up a Circuit?
There are two main parts that make up a circuit: conductive lines
and components.

Conductive Lines

Although most of the focus for a circuit is placed on the components,
you cannot have a circuit without some sort of connection between
the components. Our computers and electronic devices contain
printed circuit boards (PCBs). PCBs, which do not conduct electric-
ity, are composed of base layers of material onto which fine lines
of conductive material have been applied, as seen in Figure 3.4.
The conductive lines connect components that are soldered to the
PCB. If you look at a PCB, you’ll notice the shiny silver lines running
between the components, connecting them. These lines are like
wires stuck to a flat surface.

Meet the Circuit 35

Figure 3.4: Detail of printed circuit board

Components

Components are the other requirement for a complete circuit. We
looked at a whole list of components to buy in Chapter 1, “Introduc-
tion to Arduino.” The components form the locations that need to be
connected within a circuit (Figure 3.5).

components arranged in a circuit

+ -
resistor

momentary switch

LED light-
emitting diode

some common components

Figure 3.5: Circuits are made of components.

Learn Electronics with Arduino36

In Figure 3.6, you can see that the leads of the components are
acting as conductive lines.

+
-electricity

flows through
the metal legs

and into the
components

conductive lines

Figure 3.6: Electricity flows through conductive lines.

Where Do We Begin?
The first circuit we’re going to build together is an LED bulb flash-
light powered by a battery. This circuit is a great beginner project
because the light turning on confirms visually that the circuit is work-
ing. The flashlight circuit also demonstrates the basic techniques of
circuit building you’ll need throughout all the projects in this book.

Figure 3.7 is a drawing of the circuit when completed, with the
parts annotated. We’ll explain what the parts do in detail, partially in
this chapter and in forthcoming chapters as well. For now, know that
this circuit will be built from an LED, a resistor, a jumper, a 9V bat-
tery, and a battery cap arranged on a breadboard, components you
met in Chapter 1.

There are many different ways of representing or drawing circuits
to convey the necessary information. In Figure 3.7, we have made
an approximation of what the circuit will look like when you build it.
This isn’t always the clearest way to see what is happening—some
circuits have many parts that are connected in complex ways. Sche-
matics are a great way to make a drawing of a circuit that has sim-
plified parts and show how they are connected. Let’s take a closer
look at how schematics work.

Meet the Circuit 37

battery cap

battery

resistor

jumper

breadboard

LED

Figure 3.7: The circuit we’ll build

The Schematic
A schematic is a diagram of the relationships of the electronic com-
ponents in a circuit. In a schematic, you see the components that
are part of the circuit and how they are attached to each other. Let’s
start by looking at a simple schematic that represents our basic cir-
cuit. We’ll get into the details about what each symbol means in the
schematic soon, but for now let’s just take a quick look. Figure 3.8
compares a schematic of the circuit we are about to build to a
drawing of the circuit.

Learn Electronics with Arduino38

Figure 3.8: Schematic of the circuit with a drawing of the circuit

Why Is It Important to Learn How to Read
a Schematic?
Most electronic projects and components are represented by sche-
matics, not necessarily by drawings or photographs. As your elec-
tronic skills advance and you want to build your own projects outside
of this book, you’ll need to be able to read and draw schematics in
order to research your projects, as well as describe and build them.

We’re starting with simple schematics—we’ll build up to more
complex representations as we build more complex projects in the
book. As you look at schematics online or in other documentation,
you may notice that there are sometimes variations in how the sym-
bols are drawn or arranged. Don’t worry if all the schematic symbols
don’t look exactly alike, as shown in Figure 3.9.

Figure 3.9: Schematic symbols for LEDs

Meet the Circuit 39

Diagram of Your Circuit: The Schematic
You’ve learned that a schematic is the standard way to represent
the electrical relationships in a circuit. All commonly used electronic
components have a symbol to represent them within electronic
schematic diagrams in order to make it clear what is attached within
the circuit. Figure 3.10 shows a basic circuit of one LED, a resistor,
and a battery. The LED has an orientation, a positive lead (anode)
and a negative lead (cathode), as mentioned in Chapter 1.

Schematics are primarily concerned with diagramming how the
components are connected in the circuit, and will sacrifice clarity
in how the components are set up physically to demonstrate better
how they are connected electronically.

LED

cathodeanode

start = positive end = ground

battery

resistor

Figure 3.10: Annotated schematic for the circuit

Learn Electronics with Arduino40

Table 3.1 shows the symbols for the components that are in our
first circuit. The Wikipedia page on electronic symbols is a good
place to get an overview of many of the symbols used in schematics:
en.wikipedia.org/?title=Electronic_symbol.

Table 3.1: Components with their schematic symbols

COMPONENT DESCRIPTION SCHEMATIC SYMBOL

Battery

LED (light-emitting diode)

Resistor

There are also a few other ways that the symbols from a power
source can be drawn, as you can see in Figure 3.11. We’ll cover the
concepts of power and ground later on in the chapter, but recognizing
these symbols will help you understand what is going on in our circuit.

generic power symbol
with voltage rating

generic ground symbol

Figure 3.11: Schematic symbols for power and ground

Meet the Circuit 41

Drawing a Schematic
You’ve seen an example of a schematic, as well as the symbols that
are used in the schematic for our first circuit. How do you connect
the symbols to draw a schematic?

We’ll start with the symbol for a resistor in Figure 3.12. Remem-
ber that the resistor does not have a positive-negative orientation,
so it does not matter which end is which.

Figure 3.12: Schematic symbol for a resistor

We’ll next draw the symbol for the LED and connect it to the
resistor with a solid line. Why is the line solid? Remember that we
are representing the physical connection between the components
in the circuit, just like the conductive silver lines on the PCB.

The positive end, or anode, connects to the resistor as it will in the
circuit when we build it, as seen in Figure 3.13. When we attach the
battery, the power will flow through the resistor to the positive end
of the LED.

Figure 3.13: Resistor connected to anode of LED

Now we add the symbol for the battery and connect it to the
symbols for LED and resistor, as shown in Figure 3.14. The nega-
tive end of the LED, or cathode, connects to the negative end of the
battery.

Learn Electronics with Arduino42

Figure 3.14: Schematic for the circuit

We can see in this schematic that one end of the resistor is
attached to power, or the plus sign on the battery. The other end of
the resistor is attached to the positive end of the LED. The negative
end of the LED is attached to ground, or the minus sign. Our sche-
matic represents the complete loop of our circuit.

Using a Breadboard
How do we attach the components to build a circuit? If you take a
look at Figure 3.15, you can see there is a breadboard beneath all
the components.

Why do we use a breadboard? The breadboard allows us to connect
all our components. We could never hold all the pieces together with our
fingers, and we don’t want to permanently attach them to each other
initially. We know that a circuit is a loop and that the components must
be connected. The breadboard allows us to connect our components
to each other rapidly and gives us the flexibility to easily adjust our cir-
cuits. Using a breadboard allows us to rapidly prototype our projects.

Meet the Circuit 43

breadboard

Figure 3.15: The circuit we’ll be building, with the breadboard marked

Note Using a breadboard allows us to attach components to each
other quickly and make adjustments to our circuit.

Breadboard Basics
You’ve seen pictures of a breadboard and circuits assembled on a
breadboard. You also know that using a breadboard allows you to
quickly prototype circuits and test them out. How is a breadboard
constructed? Let’s look at an “x-ray” view of a breadboard.

Learn Electronics with Arduino44

Warning Don’t actually remove the backing—doing so could ruin your
breadboard.

A breadboard has strips of metal encased in plastic with a grid
of holes on the top. The holes, called tie points, are placed at regular
intervals and arranged in rows and columns.

In Figure 3.16, you can see the metal strips arranged over rows
and columns of tie points. All of the tie points that are connected to
one of the metal strips are connected to each other.

metal strip connects these tie points

metal strip connects
these tie points

Figure 3.16: An “x-ray” view of a breadboard

The rows and the columns are arranged in patterns to make it
easy to build circuits with standard electronic components.

The long columns on the far left and right of the board shown in
Figure 3.17 are by convention attached to power and ground, and
they are called power and ground buses. There is a plus (+) sign or
a minus (–) sign at the top of each column. They will be attached
to the plus and minus signs on the battery. There is often a red line
close to the power bus, and a green, blue, or black line next to the

Meet the Circuit 45

ground bus. Some breadboards, particularly smaller ones, do not
have these power buses.

power buspower bus

ground bus ground bus

the holes in
these columns
are connected

Figure 3.17: Power and ground buses in a breadboard

We’ll explain more about power and ground later. For now, you
just need to know that we’ll connect a battery to the buses on one
side of the board, and the left and right side buses are not con-
nected. Left or right, it doesn’t matter to which side of the bread-
board you attach power and ground, though we’ll connect the
battery to the left side of the board. It’s a good idea to be consistent
in how you set up your breadboard.

Learn Electronics with Arduino46

Making Connections
Generally a gap, known as a trench, exists down the middle; it is the
same width as some components, to make it easy to plug them into
the circuit. The tie points in each row on either side of the trench are
connected, allowing you to make connections between components
when you place them on the board. Figure 3.18 shows that they do
not connect across the trench; each row of tie points on either side
of the trench is a discrete row.

row of connected tie points

row of
connected
tie points

row of connected
tie points

trench

these tie points
are NOT
connected

Figure 3.18: Row of tie points in the breadboard

Meet the Circuit 47

Note The rows in a breadboard do not connect across the
trench.

Components can be connected to each other by putting them in
the same row of tie points, as shown in Figure 3.19.

these are not complete circuits; they
show how components are connected

in a row of tie points
components are
connected here

these components
are connected

components are
connected here

and here
Figure 3.19: Connected components in breadboard

QUESTIONS?
Q: Do I need a new breadboard for each circuit I build?

A: The great thing about breadboards is that it is very easy to
change out the parts of a circuit or make a new one entirely. You
could make all of the circuits in the book by just reusing one bread-
board. If you want to have more than one circuit set up at once, it is
helpful to have an additional breadboard.

Learn Electronics with Arduino48

Building a Circuit
We’re going to build our first circuit! You’ll need these parts and tools:

▨▨ Breadboard

▨▨ 9V battery

▨▨ Battery cap

▨▨ 1 LED

▨▨ 330-ohm resistor (bands colored orange, orange, brown, gold)

▨▨ Jumper wires

▨▨ Needle-nose pliers

Get all of your parts together to start building the circuit in
Figure 3.20.

Figure 3.20: The circuit

Meet the Circuit 49

Step-by-Step Circuit Instructions
We are going to walk you through the steps of making the basic cir-
cuit we’ve shown you throughout the chapter. You may not under-
stand exactly how all the parts in the circuit work together yet. Don’t
worry about this—we’ll explain more about electricity in a circuit and
about each component as we move forward. For now, just follow
the steps.

The first parts you’ll need are the breadboard and the 330-ohm
resistor. You’ll learn more about resistors later, but right now you
just need one resistor that has four bands with the colors orange,
orange, brown, and gold.

Pick one corner of the breadboard—we are starting with the
upper-left corner. (It doesn’t make a difference if you pick the
right- or left-hand buses, but it’s preferable to be consistent.)
First put one end of the 330-ohm resistor (with bands colored
orange, orange, brown, and gold) into the power bus (marked
with the + sign) of your breadboard and the other end into a row
of your board. You’ll have to bend the leads a little so you can get
them into the board.

Resistors don’t have a forward or backward direction in a circuit,
so it doesn’t matter what the orientation is. Each lead or leg is the
same. Figure 3.21 shows how the resistor is attached.

Tip The components should feel like they are pressed in place.
Sometimes it’s hard to get the components all the way into the board.
Just be patient. Some people find it easier to use needle-nose pliers
to stick components into a board, whereas others just use their hands.
See what’s easier for you.

Learn Electronics with Arduino50

lead placed in
row of tie points

lead placed in
power bus

Figure 3.21: First add the resistor.

Next add an LED (Figure 3.22). The anode (long lead) goes in the
same row of tie points as the resistor. The cathode (short lead) goes
into the next row.

Figure 3.23 shows how one end of the resistor is in the same row
of tie points as the anode of the LED.

anode

cathode

Figure 3.22: Add the LED.

Meet the Circuit 51

cathode of
LED in next
row of tie
points

Anode of LED
connected to resistor

Figure 3.23: LED placed correctly

Next, you should put a jumper connecting the ground bus (marked
with the – sign) to the cathode of the LED, as shown in Figure 3.24.
Using a black jumper will indicate that it is going to ground. The
jumper is just there to make a connection between the cathode and
the ground bus.

one end of jumper
in same row of
tie points as
cathode of LEDone end of jumper

in ground bus
Figure 3.24: Add a jumper to ground.

Learn Electronics with Arduino52

Add the battery cap into the breadboard power and ground bus
(Figure 3.25). It has metal ends that will fit into the power and the
ground bus.

Tip Make sure you get a secure fit into the breadboard. Doing so
can be tricky; sometimes twisting the wire at the end of the battery
cap can help.

black lead of battery
cap attached to ground

bus (green minus sign)

red lead of battery cap
attached to power bus

(red plus sign)

Figure 3.25: Add the battery cap to the breadboard.

A Look at the Battery
Let’s take a closer look at the 9V battery and the battery cap. The
top of the battery has two terminals that attach to the snap con-
nectors on a battery cap, as shown in Figure 3.26. The smaller one,
next to the plus (+) sign, is the power terminal. The larger terminal,
next to the minus (–) sign, is the ground terminal.

Meet the Circuit 53

+ -
top of 9V battery side view of battery

power
terminal (+)

power
terminal (+)ground

terminal (-)

ground
terminal (-)

Figure 3.26: 9-volt battery up close

Turn over the battery cap, and look at the two snap connectors.
The small connector will attach to the ground terminal and the large
connector will attach to the power terminal, as seen in Figure 3.27.

underside of battery capred lead attached to snap
connector that connects to power

black lead attached to snap
connector that connects to ground

attaches to ground
terminal

attaches to power
terminal

Figure 3.27: The battery cap

The snap connectors will only attach properly if the battery is
correctly oriented, as shown in Figure 3.28. Your battery cap or
holder may look different, but it will follow the same conventions.

+ -
snap connecter attached

to power terminal on battery
snap connecter attached to
ground terminal on battery

Figure 3.28: Attaching cap to battery

Let There Be Light!
Now attach the battery to the cap. Your LED should light up (Fig-
ure 3.29). You’ve made your first circuit!

Learn Electronics with Arduino54

Figure 3.29: Your LED lights up!

This is just the first of many LEDs in the book, but feel good that
you have turned on this first one. Next, let’s look at how the battery
is providing power to our circuit.

QUESTIONS?
Q: What if I don’t have the resistor that you suggest?

A: We recommend buying a wide range of resistors initially to make
sure that you have all of the resistors suggested for the first few
projects and chapters in the book. Although there are ways to com-
bine resistors to change their value, we don’t cover them in detail in
this book. It is generally best to have a variety to begin with.

Meet the Circuit 55

Power for Our Circuit:
Electricity
The term power has a specific meaning when talking about electricity,
which we’ll explain later. For the moment, power here refers to the fact
that electricity comes from our battery, passes through the resistor
to the LED, and lights it up. Let’s take a closer look at how this is indi-
cated both on our battery and with the color of the wires in our circuit.
We looked at the plus and minus symbols on the battery briefly when
attaching the battery cap; now we’ll look at the symbols in more detail.

A Word about Power Symbols
As you can see in Figure 3.30, there is a + (positive) side and a –
(negative) side on a battery, the conventional symbols used to mark
which side of the battery produces power (positive) and which side
is the ground (negative) side. (And you’ve seen the plus and minus
signs on the buses on the breadboard.) You also saw that the posi-
tive side of the battery attached to the red lead on the battery cap
and the negative side attached to the black lead on the battery cap.

+ -
positive side of battery:

power, red wire
negative side of battery:
ground, black wire

Figure 3.30: Positive and negative sides of a battery

Learn Electronics with Arduino56

Power

The + sign, or the positive, marks the power side of your battery. The
convention is that power flows from this side of the battery, and all
paths in your circuit must trace back to the power side. Standards
also state that all wires that are connected to the positive side are
red. This way, anyone who needs to look at or repair your circuit can
immediately tell from where the power enters your circuit.

Ground

The – is the negative side of the battery, also known as the ground
side. Just as all paths in the circuit must begin with the power side,
they must all end at the ground side if you trace them along the
entire length. Ground can be thought of as the “zero” side, the place
where all power has been used up. All wires that lead back to the
ground part of the circuit should be black; that will make it easier to
work on your circuits and to know at a glance what parts are con-
nected to ground.

We have looked a bit at power and ground, and you built your cir-
cuit. But what if your LED didn’t light up? What steps can you take to
find your problem and fix your circuit?

QUESTIONS?
Q: Do I need to use a new battery to light my LED? Can I use an old
battery I found/borrowed around my house?

A: Yes, you can, but chances are your lights won’t shine as bright as
when you use a new battery. Batteries run out of power over time.

Meet the Circuit 57

Debugging the Circuit
Something went wrong or doesn’t work right? What if the LED didn’t
light up? What might be wrong? Debugging!

Checking your circuit to see what is wrong is called debugging.
Debugging is not just about solving the immediate problem, but also
about creating a checklist of possible issues and solving them one
by one. Sometimes the “obvious” solution is the hardest to find, and
by following a checklist, you’re sure not to miss anything.

Are Power and Ground Connected to the
Breadboard?
Make sure you connected the leads from the battery cap correctly
to the power and ground buses on the breadboard, as shown in
Figure 3.31. Remember: Connect the red lead to the bus with the
red line next to it with a plus (+) sign at the top and the black lead to
the ground bus with a green, blue, or black line (depending on your
breadboard) and a minus (–) sign at the top of the breadboard.

Figure 3.31: Leads from the battery cap attached properly to the power and
ground buses

Learn Electronics with Arduino58

Is the LED Oriented Correctly?
Check to make sure you have placed the LED
correctly on the breadboard. Remember it has a
positive lead (anode) and a negative lead (cath-
ode) and current flows through only if the LED
is oriented correctly. The positive lead is longer
than the negative lead, as shown in Figure 3.32.

Did I Use the Correct
Resistor?
Next check to see if you used the correct resis-
tor. We’ll discuss how to select a resistor in later
chapters, but if you have used one with too
much resistance, the circuit will not have enough
power to light up. If you use one that doesn’t
have enough resistance, you can destroy your LED. For this circuit,
the resistor should have orange, orange, brown, and gold color
bands (Figure 3.33).

Figure 3.33: A 330-ohm resistor

These first few debugging steps rely on careful observation and
understanding of the circuit basics we have covered so far. Some
debugging steps will also rely on tools to enhance your knowledge
about what happens in the circuit.

Debugging Circuit Loops: Continuity
Perhaps the most common error in building a circuit using a bread-
board is putting the components in the wrong tie points on the

Figure 3.32:
Positive (anode) and
negative (cathode)
leads of LED

Meet the Circuit 59

breadboard so they are not connected. As you’ve seen, circuits are
loops, and if the components are not attached to each other prop-
erly, the loop is broken. Continuity is the property that simply means
that things are connected, as shown in Figure 3.34.

The resistor and
LED ARE connected.

The LED and the
jumper ARE connected

The resistor and LED
ARE NOT connected.

Figure 3.34: Components that are properly connected, and components that are
not properly connected

You can check to see whether your components are attached
correctly by looking closely at your board. Check carefully that the
leads for the LED, resistor, and jumper are in the correct rows of tie
points on the breadboard so they are connected properly.

There is another way to test for continuity in a circuit on a bread-
board besides inspecting it visually: you can test for continuity with a
multimeter (Figure 3.35).

Figure 3.35: A multimeter

Learn Electronics with Arduino60

QUESTIONS?
Q: Will I have to memorize the steps for debugging?

A: Good question. You are not required (or expected) to memorize
the debugging steps. You’ll find that after building the circuits in
the book you’ll begin to remember the debugging steps since you’ll
use them frequently. We’ll reference the steps as need be for the
remainder of the book.

The Multimeter
Another way to find out information about your circuits is by using
a multimeter. A multimeter is a critical tool for verifying that our
electronic and Arduino projects are running correctly and that all of
our parts are functional. Your multimeter will be a great tool to use
throughout the projects in this book to ensure everything is working
as expected. We’ll sometimes call it a multimeter, and sometimes
we’ll refer to it as a meter. Now we’ll show you how to use it to test
for continuity.

You won’t use a multimeter with the Arduino here, but you will in
future chapters. Why are we looking at it now? It will help you debug
your first circuit, and it will be invaluable later on when your proj-
ects become more complex and you learn more ways to use it. Fig-
ure 3.36 shows a few different multimeters.

We are using the meter from SparkFun (SparkFun part number
TOL-12966), which we mentioned in the parts list in Chapter 1. The
drawings of the multimeter in this book are all based on this model.
Your meter may look different, but the principles of setting up the
meter and using it will be the same.

Meet the Circuit 61

There are many different models of multimeters. Here are pictures of a few.

our meter of choice,
but all are nearly identical

Figure 3.36: Multimeters come in different sizes and colors.

Multimeter Overview
Figure 3.37 shows the parts of a multimeter: a display that shows
the value of the electrical property you are measuring, and a dial
that turns to determine the electrical property you are testing. One
end of the probes touches the components you are testing at one
end, whereas the other end is attached to the meter in the ports.

Learn Electronics with Arduino62

dial

ports

probes

display

Figure 3.37: Parts of a multimeter

Some meters have off /on buttons, whereas this one turns on
with the dial.

Warning Remember to turn your meter off when you are done so
you don’t run down the battery.

Most multimeters are powered by a 9V battery. We don’t include
instructions for inserting the battery into your meter. If you get this
meter, the instructions will come with it. If you purchased or inherited
a different meter, the instructions for replacing the battery will be
different.

Meet the Circuit 63

Parts of the Multimeter: The Dial
Figure 3.38 is a detail of the dial of a typical multimeter marked with
some of the electrical quantities it can measure. We’ll explain all these
symbols and properties as we progress through the book. Right now
just know that there are different properties you can measure: AC
voltage, DC voltage, resistance, DC amperage, and continuity.

resistance

continuity

DC amperage

DC voltage

AC voltage

Figure 3.38: The dial of a multimeter with electrical properties it can measure

We’ll return to these electrical properties and how to measure
them with the meter in Chapter 5, “Electricity and Metering.”

Parts of the Multimeter: The Probes
Figure 3.39 shows the probes, the part of the multimeter that
touches your circuit, component, or whatever it is you’re testing or
measuring. The metal tips of the probes are placed so that they
touch the circuit or component. The other end of each probe snaps
into the ports on the multimeter. The probes will not be attached to
the ports when you unpack the multimeter.

Learn Electronics with Arduino64

this end of the probes
will be used to touch

your components

this end of the probes
will be attached to the
ports on the multimeter

Figure 3.39: Probes of the multimeter

Parts of the Multimeter: The Ports
Now that we’ve looked at the probes of the multimeter, let’s take a
closer look at the ports on the meter, shown in Figure 3.40.

It is important that the probes be placed in the correct ports
when using a meter. For all measurements, the black probe is
placed into the center COM port. The red probe has two different
ports in which it can be placed (the outsides as marked). Generally,
keeping the red probe in the far-right port is a good practice.

Meet the Circuit 65

red probe is placed
here sometimes

This is a detail of what the ports look like without the probes.

black probe, or COM, is
ALWAYS placed here

red probe is placed
here to measure most
properties

Figure 3.40: The ports on a multimeter

Using the Multimeter
Continuity (Figure 3.41) is an elec-
trical property that shows whether
a connection exists between parts.
You can use the meter to test this
property. It’s a good way to get
familiar with the parts of your
meter. And you’re going to use it for
debugging your circuit!

Setting Up Your Meter to Test
for Continuity
First, we’ll show you how to use the multimeter to test the electrical
connection between the probes on the meter, checking the “continu-
ity” between the probes (Figure 3.42). We’ll then move on to testing
continuity in your circuit.

Figure 3.41: Symbol for continuity

Learn Electronics with Arduino66

Figure 3.42: Multimeter with the probes touching

This test is a good way to make sure that your multimeter is
functioning and to get familiar with how to use it. If the probes are
touching, they form a complete electrical loop. The same test can
be used later to check if your parts are connected correctly from an
electrical perspective.

Meter Settings for Testing Continuity
To test continuity, the black probe goes in the port marked COM and
the red probe goes in the port marked mAVΩ, as seen in Figure 3.43.

black probe in
COM port

red probe in
mAVΩ port

Figure 3.43: Meter port settings to test for continuity

Meet the Circuit 67

Next, move the dial so the knob is pointing toward the continuity
symbol (Figure 3.44).

continuity on the
multimeter

Figure 3.44: Turn the knob to the symbol for continuity.

Testing Continuity
When the probes touch components that are connected, the meter
will play a tone if the meter is set to test for continuity. When the
probes are attached to the ports correctly, if they touch each other
they make an electrical loop. You are making a circuit with your
probes in order to test continuity.

Touch the two probes together now to test this out, as shown in
Figure 3.45. While the probes are touching, the screen will display
“.000,” though it may fluctuate slightly. You’ll also hear a tone that
will vary in sound depending on your meter. For continuity, the dis-
play numbers are not as important as they will be with the other
properties we’ll talk more about in Chapter 5.

Learn Electronics with Arduino68

display shows .000

dial set to
continuity symbol

black probe in COM port

red probe
in port marked
mAVΩ

touch probes together!

Figure 3.45: The multimeter with the probes touching is a test for continuity.

When the probes touch, as shown in Figure 3.46, you should hear
a tone!

Figure 3.46: The probes touch, and a tone plays.

Meet the Circuit 69

Continuity will help troubleshoot issues in more complicated cir-
cuits by identifying when components are not connected to each
other or if they are connected in an incorrect spot. We’ll show you
more explicitly how continuity can help you solve issues in Chapter 5.

Back to Debugging
Our Circuit
Let’s return to our basic circuit. Now that you have unboxed your
multimeter and understand what continuity is, let’s apply the multi-
meter probes to our circuit and take a look at our results.

Testing Continuity in a Circuit
Your meter is already set up correctly to test continuity if you just
completed the last exercise. The settings for the dial and probes are
shown in Figure 3.47. Check to make certain that the dial is set to the
continuity symbol and the probes are in the right ports.

continuity on the
multimeter

black probe in COM port red probe in mAVΩ port

Figure 3.47: Meter settings to test continuity

First, remove your battery from the circuit. Then, turn on your
meter and place the probes on one of the leads of the resistor and
one of the leads of the LED, as shown in Figure 3.48. It doesn’t mat-
ter which color probe touches which lead.

Learn Electronics with Arduino70

probe touches lead of LED

probe touches
lead of resistor

battery is removed
from the circuit

Figure 3.48: Testing the circuit for continuity

If your components are connected, you’ll hear the buzzing sound
again, and the settings on the display will read .000 with a possible
slight fluctuation.

What if you didn’t get that buzzing sound? Check the connections
in your breadboard between each component to see if they are in
the proper tie points.

In Figure 3.49, the LED is not connected to any of the other com-
ponents. The resistor is attached to the power rail and the jumper
is attached to ground, but neither is attached to the LED. To fix the
circuit, put the leads in the correct tie points.

the LED is not connected
to anything else in the circuit.

probe touches lead
of resistor

probe touches lead of LED

battery is
removed from

the circuit

Figure 3.49: The multimeter testing a circuit where the components are not
connected

Meet the Circuit 71

QUESTIONS?
Q: What about all those other symbols on the multimeter—when will
we use the multimeter to measure those?

A: We’ll explain more about the multimeter and how to measure
the various electrical properties (resistance, voltage, current) in
Chapter 5.

Q: What if my meter has a different reading than .000 when I’m
testing continuity?

A: With the recommended meter, the most important thing to pay
attention to when checking continuity is to listen for the noise cre-
ated by the meter that indicates your components are electrically
connected. Meters without sounds will have other ways of indicating
continuity on the display screen.

Summary
In this chapter, you learned how to build a circuit and how to debug
it. You were introduced to the multimeter, and you learned how to
use it to check if all your components were connected. In the next
chapter, you’ll set up your Arduino to program it, and then connect it
to a breadboard to begin using your Arduino to control components.

In this chapter, you’ll start to see how the Arduino con-
trols electronics with the programs that you write. First

you’ll set up the software to program the Arduino on a
computer; then you’ll connect your Arduino to a bread-
board. We’ll show you how to build an SOS signal light
using an LED. You’ll learn basic rules about writing code
and get familiar with writing code in the Arduino environ-
ment. For this chapter, you need to know how to hook up
your Arduino to a computer and how to build a basic cir-
cuit on a breadboard.

Programming
the Arduino 4

Learn Electronics with Arduino74

Arduino, Circuits, and Code:
Bringing Everything Together
This is your first opportunity to combine building circuits with basic
programming. When you add programming and the Arduino to your
circuit, you have more control over the circuit; your LED can flash
on and off in different patterns. You’ll learn how to program the
Arduino and connect it to a breadboard to build a complex circuit
in which the timing of the components in the circuit is controlled by
the series of instructions loaded onto the Arduino. To illustrate this,
we’ll show you how to create an SOS signal light with an LED that
flashes on and off according to timing controlled by the Arduino.

From this point on, most of the projects will include the three
parts shown in Figure 4.1: the code, the Arduino, and a circuit on a
breadboard. We’ll discuss the combination of all three elements and
how they interact with each other in this chapter.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

code for Arduino in this circuit Arduino Uno breadboard with components
attached to Arduino

circuit with Arduino
attached to breadboard

Figure 4.1: Code, Arduino, and the breadboard

Programming the Arduino 75

We looked at the Arduino and some of its features in Chapter 2,
“Your Arduino.” In Chapter 3, “Meet the Circuit,” you learned a bit
about small-scale electronics and circuits. We’ll walk you through
downloading and using the Arduino IDE in this chapter, which will
allow you to upload code, changing the behavior of the Arduino.

Just as we’ll show you the necessary circuits throughout the book,
we’ll also include all the code examples you will need to run your projects.

To code, you’ll need software from Arduino installed on your com-
puter. You’ll download and install the Arduino IDE. What’s an IDE?
Let’s take a look.

What’s an IDE?
An integrated development environment (IDE) is a software appli-
cation that allows you to write code and test that code out in the
programming language the IDE supports.

If you have experience programming, you may have used another
IDE to write, test, debug, and turn your code into something the
computer understands. If you haven’t, the Arduino IDE is a good
place to start—it is relatively simple and easy to understand.

The Arduino team has designed an IDE for use with their devices
that has all the features you need. It has a built-in code editor, which is
a program used to write the text files that you create when program-
ming. You can test your code in the IDE and solve any emerging prob-
lems with the help of a message area that shows errors in your code
and a console that provides more detail about the nature of these
errors. It has buttons so you can check your code, save it, create a new
code window, upload it to your Arduino, and more. This matches nicely
with the basic flowchart for Arduino projects as shown in Figure 4.2.

Note Uploading is transferring the instructions you write in the
code editor to the “brains” of the Arduino so that your code controls
the Arduino.

Learn Electronics with Arduino76

Write code Test code

Find errors

Upload code
Figure 4.2: Arduino flowchart

The IDE is freely available on the Arduino website at arduino.cc/en/
Main/Software. It is possible to program an Arduino using another text
editor or IDE, but we’ll stick with using the Arduino IDE in this book.

What’s in the Arduino IDE?
So what’s in the IDE?

▨▨ A code editor window where you write your code

▨▨ A message area that gives information about your code

▨▨ An error console that gives detailed information and helps in
debugging

▨▨ Menus that allow you to set properties for your Uno and load
code examples and other functions

▨▨ Buttons to check code, upload it to Arduino, save code, create a
new code window, and more

What Is Code?
In basic terms, code is used to give instructions to the computer. We
use code to speak in the language the computer understands (in this
case, the Arduino language) in order to accomplish a set of tasks or
to set up a series of programmed responses. Computers have a hard
time understanding what you mean, imply, or suggest. They are not
capable of the finer points of language, so we use code to simplify
the instructions to a set of commands at a fundamental level.

Programming the Arduino 77

You’ve seen what’s in an IDE, as well as a basic description of
code. Let’s take a quick look at the Arduino IDE.

Arduino IDE: First Glance
Here’s your first look at the Arduino IDE. Don’t worry about memorizing
any of the parts or what they do—this is just a first glance. We’ll cover
all of the parts in detail later in this chapter and in the rest of the book.

As you can see in Figure 4.3, menus appear at the top of the win-
dow. There are also buttons for frequently used functions such as
save, an area where you can write code, and some message areas.

menus

save button

area to
write code

message
areas

errors and
information

window

Figure 4.3: Arduino IDE

Learn Electronics with Arduino78

Now that you have an idea about what’s in an IDE (and, specifically,
in the Arduino IDE), you can download it and install it on your computer.

Downloading the Arduino
IDE: Getting Started
The IDE you’ll use to program your Arduino is free and available on
the Arduino site. The installation procedure is slightly different for
the Mac platform than for the Windows platform, so we’ll walk you
through the download and installation process for both of them.

Note The URL again to download the IDE is arduino.cc/en/Main/
Software.

If You’re Using a Mac
The download page will look something like Figure 4.4. Websites
change frequently, as does software, so it may look different when
you visit it. Click the link to download the Mac version of the soft-
ware. Make sure you download the latest recommended version of
the Arduino IDE for Mac.

Here’s the
link. Click it
to download
the software.

Figure 4.4: Arduino IDE download for Mac

Programming the Arduino 79

When you click the link, a zipped version of the Arduino IDE will
start to download. It will be in the default download location on
your computer, most likely the Downloads folder. When it has fin-
ished downloading, double-click the zipped file to unzip it. The
unzipped file will be named Arduino.app and will look similar to
Figure 4.5.

Note If you don’t see .app, don’t worry—it means that your com-
puter is set not to display file extensions.

It will look like this in icon view. And like this in text view.

Figure 4.5: Icons for Arduino app

Move the Arduino.app file into the Applications folder on your
computer, as shown in Figure 4.6.

You have now downloaded and installed the Arduino IDE on
your Mac.

Applications

Applications folder

Figure 4.6: Drag the icon to your Applications folder.

Learn Electronics with Arduino80

If You’re Using a Windows PC
Downloading and setting up the software for a Windows PC is very
similar to the steps taken for a Mac computer, but there are a few
additional minor steps you need to take in order to ensure the com-
puter and the Arduino can communicate.

First you’ll have to download the software. The URL is the same
as that for the Mac download. Make sure you download the latest
recommended version of the Arduino IDE for Windows, as shown in
Figure 4.7.

Note The URL again to download the IDE is arduino.cc/en/Main/
Software.

Here’s the
link. Click it
to download
the software.

Figure 4.7: Arduino IDE download for Windows

We recommend you use the Windows Installer link. If you are
sharing the computer—for example, you’re using a computer at
school or work where you are not the only user—you may need to
download the version marked “non-admin install.”

When it is finished downloading, there will be an EXE file named
with the Arduino version in your default download location, generally
the Downloads folder. Double-click on this file to start the installation
process.

Programming the Arduino 81

The first dialog box asks you to agree to the Arduino License
Agreement (Figure 4.8). Clicking “I Agree” will take you to the next
step of the installation.

click here to continue
Figure 4.8: Arduino license agreement

With the Arduino Setup Installation Options, make sure that the
Install USB Driver and the Associate .ino Files boxes are checked (Fig-
ure 4.9). Create Start Menu Shortcut and Create Desktop Shortcut
are optional but will help you navigate to the Arduino IDE in the future.

Figure 4.9: Installation options

Learn Electronics with Arduino82

Depending on your settings and your version of Windows, you
may get a Windows security pop-up box asking about the USB
Driver installation. Click Install whenever a security dialog box pops
up to allow the Arduino IDE to be installed completely (Figure 4.10).

Figure 4.10: Security dialog box

That’s it! Now your Arduino IDE is ready to run on your Windows PC.

Connect Your Arduino to Your Computer
You’ve installed the Arduino IDE, so now it’s time to connect your
Arduino to your computer so you can program it.

Plug your USB cord into the Arduino, and plug the other end of
the USB into your computer, as in Figure 4.11.

TX
RX

AR
EF

GN
DRE

SE
T

L

Remember to use a standard A - B USB cable.

Plug the other end
into your computer.

Figure 4.11: Attach your Arduino to your computer.

Programming the Arduino 83

The LED marked ON should light up, and if your Arduino is
brand-new out of the box, the light near Pin 13 should be blinking,
just like when you tested plugging your Arduino in for Chapter 2
(Figure 4.12).

ARDUINO

DIGITAL (PWM~)

UNO- + ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10

 ~

9
 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

ICSP

LLED blinks Arduino Uno is ON

Figure 4.12: Indicator LEDs

The Arduino IDE: What’s in the Interface?
Let’s take a look at the Arduino IDE in Figure 4.13 now that you’ve
launched it.

The Arduino IDE allows you to check whether your Arduino is
connected to the computer, check your code for errors, upload any
code you write to control your Arduino, and has a few other helpful
options for understanding how the Arduino is behaving. We’ll look at
all of the features in much more detail before you start to write code
for your Arduino.

A program we write in the code editor for the Arduino is called
a sketch. When you launch the software for the first time, you’ll see
the bare bones of a sketch. We’ll explain how the code that’s there is
used as you start to program your Arduino.

Note A sketch is the name for a program you write for the
Arduino.

Learn Electronics with Arduino84

menus

buttons

area to
write code

Figure 4.13: Basics of Arduino IDE

Warning One peculiarity of the Arduino IDE is that if you close all
of the sketch windows, the IDE will try to close. It will ask you to save
a sketch if you made any changes, but otherwise it will close.

You’ll have to configure some settings before you start program-
ming. Let’s look at them now.

Configuring the IDE
Two important settings need to be configured in the Arduino IDE so
your computer can communicate with your Arduino Uno. You need
to specify which version of the Arduino hardware, or board, you are
using, and which connection or port you’ll use for communication

Programming the Arduino 85

between the Arduino and your computer. These settings will be the
same as long as you’re using the same Arduino Uno. (The settings
will be different if you’re using another Arduino. We’re using the
same Arduino for all of the projects in this book.)

Specify the Arduino Hardware Version

You saw in Chapter 1 that there are many different versions of the
Arduino. To program yours, you must indicate in the software which
version of the Arduino board you’re using.

To do this, go to the Tools menu and select Board, as shown in
Figure 4.14. From the flyout menu, select Arduino Uno/Genuino.
Once this is set, you’ll have to set a port through which your Arduino
will communicate with your computer.

This screenshot is from a Mac computer.

Tools menu

Select Arduino/Genuino Uno

List of all the
versions of the
Arduino

Figure 4.14: Selecting the Arduino board

Specify Which Port You’re Using

There is a port on the Arduino that communicates with a port on
your computer when the two are connected by a USB cable. Think
of the port as the channel through which the two devices speak to

Learn Electronics with Arduino86

each other. Right now, you need to set up the Arduino IDE so the
correct port on your computer communicates with your Arduino.

Selecting the right port looks slightly different on a Mac and a
Windows computer. We’re going to look at screenshots for both of
them. Remember, you’re setting up your computer to talk with your
Arduino Uno, since that is the version of Arduino that we’re using for
the projects in this book. Let’s look at Mac first; if you have a Win-
dows PC you can skip ahead to the next section.

Note A port is a channel of communication that connects your
Arduino and the computer.

Mac Port Selection

To set the correct port for your computer to communicate with the
Arduino, go to the Tools menu and select Port, as shown in Figure 4.15.

screenshot from a Mac

detail of correct port selection

name of port selected name of Arduino

Figure 4.15: Selecting the correct port

On a Mac, select the port whose description includes dev and
cu and that is labeled Arduino/Genuino Uno. Dev is a prefix added
by the Mac, cu is short for call-up, and Arduino Uno is the version

Programming the Arduino 87

of Arduino hardware you’re using. In our earlier example, the num-
ber at the end of that menu item is 1451; on your screen, this will
be different from this example, and it might be different each time
you connect your Arduino. In some versions of the software or oper-
ating system, you may see tty rather than cu in the lists of ports.
That should work as well; what is important is that you see Arduino/
Genuino Uno in the port description.

Nothing bad will happen if you select the wrong port, but the
Arduino and your computer won’t know how to talk to each other. If
it seems that the Arduino and your computer aren’t communicating,
take another look at your list of ports and make sure you’ve selected
the right one.

Windows Port Selection

Let’s look at the port selection on a Windows machine (Figure 4.16).
On a PC, the port names will all start with COM. You want to go to
the Tools menu, select Port, and then select whichever COM number
matches up with the Arduino Uno/Genuino label under Serial Ports.
It will be something like COM3 (Arduino Uno/Genuino).

screenshot from a Windows PC

Figure 4.16: Selecting the correct port

Learn Electronics with Arduino88

QUESTIONS?
Q: Will I always choose the port that says Arduino Uno/Genuino?

A: Not necessarily. That is the version of the Arduino board we are
using in this book, so all of the projects in the book use the Arduino
Uno, but you may want to use other versions of Arduino as you build
your own projects later on.

Q: Sometimes there are other ports listed in the dropdown. What
are they?

A: Those are other ports that use different means for your com-
puter to communicate with other devices. Don’t worry about them—
we won’t be using them.

Q: What if I don’t have my computer hooked up to the Arduino? Will
I see the port to connect to my Arduino then?

A: No. In order to see the correct port, you must have your Arduino
and computer connected with a USB cable.

Now that you’ve set the port and the correct Arduino board, let’s
take a closer look at the Arduino IDE used to create your code.

Understanding the Code Window
We’ve heard about the parts of the Arduino IDE; now let’s take a
look at them more closely in Figure 4.17.

As in most software, there are menus that allow you to perform
various actions, such as creating new files, saving them, and many
more, at the top of the software interface. There are button icons
that also allow you to quickly access some of the most often per-
formed actions. Clicking the Verify button checks to make sure there

Programming the Arduino 89

are no errors in your code. Clicking Upload transfers your code from
your computer to your Arduino so it can run on your Arduino board.
There is a window where you type your program, and message
areas that give you information about that program. We’ll explain
more about messages as we work in the IDE; for now, know that
they tell you if your code has errors, and also information like the
amount of space it uses in the Arduino’s memory.

menus

buttons

area to
write code

message
areas

errors and
information

window

Figure 4.17: Arduino IDE annotated

Learn Electronics with Arduino90

Let’s look a little closer at the buttons at the top of code editor in
Figure 4.18.

These buttons allow you to quickly access the actions that you
will perform most often with the code window. These actions include
checking if your code has any errors (verifying), sending your code
to the Arduino board (uploading), creating a new file, opening a file,
and saving it.

VERIFY
Checks your
code for errors

UPLOAD
Sends your code
to your Arduino

NEW
Creates a new
code window

OPEN
Opens a previously
saved sketch

SAVE
Saves your sketch

Figure 4.18: Buttons in the Arduino IDE

We’ll use all of these buttons in just a moment, but first let’s be
clear about what writing a sketch actually means.

The Sketch: The Basic Unit
of Arduino Programming
You can think of an Arduino program, or sketch, as one full group
of instructions to perform specific tasks. A sketch includes all of
the code, or instructions, for that task or tasks. It’s possible to have
multiple, separate sketches open at once—just as a spreadsheet
program can have more than one sheet open at a time. Let’s take a
closer look at what forms a sketch.

Programming the Arduino 91

Every program you upload to your Arduino is considered a sketch.
A sketch can be quite simple or extremely complex. It could turn a
single LED on and off, or it could control 10 or more motors based on
sensor input. Although each sketch corresponds with one task, that
task could be made up of multiple parts. For example, your program
may take measurements of the world (like light levels) and use them
to trigger speakers and LEDs. All of that would go in one sketch.

The name of the sketch appears in a tab in the upper-left corner
of the code editor. Figure 4.19 shows examples of Arduino sketches.

blank sketch window

name of sketch will appear in this tab

example of a sketch window with code

this sketch is named Blink. We’ll
open this sketch on the next page

type your
code in here

Figure 4.19: A blank sketch window and one with code written in it

Opening an Example Sketch
Before you start to write your own code, let’s explore an example
that is included in the Arduino IDE. The IDE has a lot of examples
(sample code) that demonstrate many of the things that the Arduino
can do built into it. You can load an example into the code window
and upload it to your Arduino when it is attached to your computer.

First, open up the example sketch named Blink by selecting File >
Examples > 01.Basics > Blink, as shown in Figure 4.20.

Learn Electronics with Arduino92

File Menu Examples 01.Basics Blink

Figure 4.20: Opening the Blink sketch

Saving Your Sketch
By default, your Arduino sketches will be saved inside the Arduino
folder within your computer’s Documents folder. It is a good idea to
continue to save in this space since it makes it easier to return to the
files. Arduino also keeps track of past files saved inside this folder in
the Sketchbook dropdown in the File menu.

Even though you’re using code from an example, it is best to
save it now with a different name so that you can always return
to the original unadjusted example code later. That way, when you
make changes and save your sketch you’ll know you haven’t saved
over the Blink example sketch accidentally. Save your sketch as
LEA4_Blink so that you’ll be able to find your changes later.

Save Early, Save Often!
Get in the habit of saving your files. Just like you wouldn’t want to
lose work from a paper or another project, saving early and often
can help save frustration if for some reason your computer closes
the Arduino IDE (losing power, momentary hiccup, etc.). Although
the odds of this happening are low, the one time it does you’ll be
glad you don’t have to repeat all the work you did because you
saved your project and don’t have to worry about it.

Tip Keep saving your sketch files as you are working.

Programming the Arduino 93

Uploading a Sketch to the Arduino
Now that you’ve saved the example sketch with a new name, it’s
time to upload it to the Arduino. Before you upload it, let’s check it
for errors. Even though you’re using the code that’s built into the IDE,
get in the habit of always verifying your code before you upload it.

There are two buttons we talked about earlier that you need
to keep in mind when you’re ready to upload your code: Verify and
Upload. We’ve highlighted both of these buttons in Figure 4.21.

Verify
Checks your code for errors

Upload
Uploads your code

to your Arduino

Figure 4.21: Verify and Upload buttons in the Arduino IDE

Step 1: Verify Your Sketch

Verifying ensures that your code is set
up correctly. Click the Verify button to
make sure there are no errors (Fig-
ure 4.22). Unless you made changes
to the LEA4_Blink sketch before you
saved it, everything will work fine.

The message window at the bottom
of the IDE shown in Figure 4.23 will display “Done compiling” and
show no errors.

verify

Figure 4.22: The Verify button

Learn Electronics with Arduino94

successful verify

Figure 4.23: The message window

When you verify your code, you will get a message that notifies
you that something is wrong if there are any errors in your sketch.
The Arduino IDE only knows about programming errors, not mis-
takes you might have made in setting up your circuit with the Ardu-
ino. (We’ll cover those types of errors as we progress through the
book.) When we type text into the Arduino IDE window, the code
looks like something that humans can read, but the Arduino doesn’t
understand how to interpret it. Your computer temporarily converts
the code into a language that the Arduino understands when you
click Verify to check for these errors.

Step 2: Upload Your Sketch

When you click Upload (Figure 4.24),
your computer converts the code into
a language that the Arduino under-
stands and then immediately begins
sending this program over the USB
cord to your Arduino.

Uploading Continued: Status Bar and Message Window

Once you click the Upload button, the Arduino IDE window will give you
a status bar indicating how much progress the upload has made and a
message window with information such as the size of the sketch. That
progress bar and message window looks something like Figure 4.25.

Once the file has been sent to your Arduino, the message window
will say “Done uploading.”

That’s it! Now your code from the IDE window is running on the
Arduino.

upload

Figure 4.24: The Upload button

Programming the Arduino 95

upload progress bar

message window

successful upload

Figure 4.25: Upload progress bar

Run the LEA4_Blink Sketch

Now that you’ve uploaded your sketch to the Arduino, as long as the
Arduino has power from the computer through the USB cable, it will
keep running. The code that you’ve uploaded to the Arduino contains
the instructions that tell the Arduino to blink the light over and over. The
LED near Pin 13 will turn on and stay on for one second, then turn off
for one second, over and over again. This is illustrated in Figure 4.26.
We’ll look at the code in detail shortly and see exactly how it works.

M A D E I N I TA LY

ARDUINO

POWER ANALOG IN

DIGITAL (PWM~)

UNO- +

RE
SE

T
IO

RE
F

3.
3V

5V GND Vi
n

A0 A1

A2

A3

A4

A5

ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10

 ~

9
 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

RE
SE

T

ICSP

.A
R

D
U

IN
O

.C
C

L

USB cable connected
to computer

LED blinks
on and off

Figure 4.26: The LED blinks.

Learn Electronics with Arduino96

If your LEA4_Blink sketch is not running, you can turn again to the
methodical process used to discover what issue is preventing your
code from working. You’ve seen this before with our electronics, and
it is known as debugging.

Note Debugging is the name of the process used for solving issues
with the circuit and with the code in your Arduino projects.

Debugging: What to
Do if the LED Isn’t
Blinking
If the upload was successful and your LED is blinking, there isn’t
anything to fix. But what if the LED didn’t light up? Just as you used
debugging to search out issues in your circuit, you’ll debug your code
throughout the book, methodically looking for problems that prevent
your code from functioning properly. You’ll also look for problems
with how the Arduino hardware is set up. If you had any issues with
your LEA4_Blink sketch make sure that:

▨▨ Your USB cord is tightly plugged into both your computer and
your Arduino (Figure 4.27).

▨▨ You have selected the right board type and serial port from the
menus (Figure 4.28).

Programming the Arduino 97

Figure 4.27: Make sure your computer is firmly attached to your Arduino via the
USB A-B cable.

Figure 4.28: Make sure you have selected the correct board.

Learn Electronics with Arduino98

If your Arduino seems not to be responding, you can always push
the Reset button before uploading, as shown in Figure 4.29. The
Reset button will turn off your Arduino for a moment before turning
it back on.

M A D E I N I TA LY

ARDUINO

POWER ANALOG IN

DIGITAL (PWM~)

UNO- +

RE
SE

T
IO

RE
F

3.
3V

5V GND Vi
n

A0 A1

A2

A3

A4

A5

ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10

 ~

9
 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

RE
SE

T
ICSP

.A
R

D
U

IN
O

.C
C

L

reset button

Figure 4.29: The Reset button on the Arduino

You can also try switching your USB port or restarting your com-
puter if none of the above solutions work for you. We’ll cover all sorts
of code debugging tricks throughout the book, but these few basic
tips concerning the Arduino can save you a lot of headaches later.

The LEA4_Blink sketch will run as long as the Arduino has power,
but how does it actually work?

LEA4_Blink Sketch:
An Overview
Figure 4.30 shows a screenshot of the LEA4_Blink sketch. This is a
quick overview of the parts of the sketch; after we look at it we’ll go
over every part of it in detail.

Programming the Arduino 99

Don’t stress out trying
to understand this code--
we’ll walk through
it in detail in the
coming pages.

comments

setup

loop

Figure 4.30: LEA4_Blink sketch first look

Comments are notes to the programmer in the text that are not
part of your program. In an Arduino sketch, setup() is where you
put the parts of your program that happen only once, and loop() is
where you put what you want to happen over and over again.

In this sketch, all of the code in setup() and loop() is written in the
Arduino programming language. If you look at the code in the Ardu-
ino IDE, you will see that parts of the code are different colors; some
are orange, some blue, some black. These colors represent some
of the different roles of the code. It’s not important to memorize or
know these colors; they are just there to help you visually separate
the purpose of the various parts.

Note In the LEA4_Blink sketch, all of the code in setup() and
loop() is defined by the Arduino programming language.

Learn Electronics with Arduino100

We’ll look at all the parts of a sketch in detail shortly, but first let’s
look at the comments section at the top of the code.

Comments: Letting Others Know What
You’re Thinking
Comments in code are used to write notes to anyone who might
read your code. This might be you when you return to a sketch you
created earlier, or others with whom you are sharing your code.
Comments have no effect whatsoever on how the computer inter-
prets the text and are only there to remind you or clue someone else
in on what you intended to do, or how the program functions as a
whole. We’ll use comments throughout our code examples to help
explain sections. It is a good habit to get into writing comments to
yourself so that you can return to a sketch later and remember what
is going on.

The first part of the LEA4_Blink sketch includes a comment about
how the file works. This comment is long, with lots of information, but
comments are sometimes short, just a word or two. As you can see
from this example, comments sometimes have information about
the author of the code and the date. In this case they also tell us
that the code is in the public domain.

In the Arduino language, as in many other popular languages,
there are a couple of ways to indicate comments. Multi-statement
comments start with /* and end with */, which allows for entire
blocks of code to be commented out. Single-statement comments
start with // and end when you hit Enter to create a new statement.
Sometimes the single statement comments are at the end of a
statement of Arduino code. Anything written after the double slash
(//) will be ignored until the next statement.

As you can see in Figure 4.31, the top section of the LEA4_Blink
sketch shows the comments at the beginning of the sketch.

Programming the Arduino 101

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.

 Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO
 it is attached to digital pin 13, on MKR1000 on pin 6. LED_BUILTIN is set to
 the correct LED pin independent of which board is used.
 If you want to know what pin the on-board LED is connected to on
 your Arduino model, check the Technical Specs of your board at
 https://www.arduino.cc/en/Main/Products

 This example code is in the public domain.

 modified 8 May 2014
 by Scott Fitzgerald

 modified 2 Sep 2016
 by Arturo Guadalupi

 modified 8 Sep 2016
 by Colby Newman
*/

// the setup function runs once when you press reset or power the board

start comments

end comments

other information,
such as authors,
dates, rights

description of
what the
code does

example of single-line comment

Figure 4.31: Comments at the beginning of the LEA4_Blink sketch

Note /* and */ denote the beginning and end of a block comment.

// indicates single-line comments.

setup() and loop(): The
Guts of Your Code
Comments, though important, are not instructions to the Arduino.
In an Arduino sketch, there are two basic sections: the setup() func-
tion and the loop() function. The diagram in Figure 4.32 shows how
setup() and loop() work: setup() happens once, followed by loop(),
which repeats over and over.

https://www.arduino.cc/en/Main/Products

Learn Electronics with Arduino102

runs once

runs repeatedly

Figure 4.32: setup() and loop() diagram

setup() is the name of a function that is included in every Ardu-
ino sketch. What’s a function? Just think of it as a way of organizing
code or instructions to the computer.

Note A function is a way of grouping statements of code or blocks
of instructions to the computer.

Generally speaking, anything that you want to happen only once
in your sketch belongs in the setup() function. setup() is run exactly
once every time your Arduino is reset.

Programming the Arduino 103

setup() and loop() Connected
We are going to take a look at the rest of the Arduino code for the
LEA4_Blink sketch, but first let’s look at a couple of example projects.
We’ll use these example projects to help you gain an understanding
of the difference between the setup() and loop() sections of the code.

EXAMPLES: HOW DO SETUP() AND
LOOP() APPLY TO THE PROJECTS?
Example 1
Later on in this chapter, you will be building an SOS signal light that
will flash an LED on and off in an SOS pattern continually, with the
timing controlled by the programming.

setup() is where you will set the pin that controls the LED to an out-
put, telling the Arduino which pin will control the LED.

loop() is where you will put the code that controls the timing, turning
the LED on and off continually.

Example 2
Let’s say you want to build a digital music box that plays differ-
ent sounds depending on what button you press, and you want to
include a volume control knob.

setup() will be used to assign different buttons to each of the
sounds and determine which pin responds to the knob.

loop() will be focused on responding to button presses and playing
each sound when the corresponding button is triggered. The loop()
function will also look for changes in the knob, which will change the
volume.

You’ve seen examples of how setup() and loop() work; now let’s
see what the setup() function looks like from the LEA4_Blink sketch
you just uploaded and have running on your Arduino.

Learn Electronics with Arduino104

setup(): Setting Initial Conditions
We’ve discussed comments, and you’ve seen that setup() runs once
at the beginning, whenever you turn on or reset the Arduino. Let’s
now take an in-depth look at the setup() function in the LEA4_Blink
example sketch.

void setup() {
 // initialize digital pin 13 as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

the complete setup() function

setup() has some parentheses attached to it; we’ll explain why
they are needed and what they do later. After the parentheses is
an opening curly brace, {, which is very important. Curly braces
denote a block of code and mark off the instructions that will hap-
pen when the code is run. In this case, whenever setup() is run,
all of the instructions will execute one by one. When you are done
with the code block, be sure to include a closing brace, }, to tell
the Arduino that you are done talking about that section of code
instructions.

Note Curly braces denote when we begin and end a block of code.

Let’s take a look at what code instructions happen when setup()
is run. For the LEA4_Blink sketch code, there is only one setup() code
instruction and one single-line comment.

Programming the Arduino 105

 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);

code instructions

comments contents of setup()

The first line looks familiar. It starts with two forward slashes,
which means that it is a comment. In this case, the comment is telling
us the purpose of the second line is to “initialize digital pin LED_BUILTIN
as an output.” We don’t yet understand what this means, but we do
now know that pinMode(LED_BUILTIN, OUTPUT); sets the built-in LED to
be an output. Let’s take a look at the code instruction line without the
comment.

pinMode(LED_BUILTIN, OUTPUT);

setup() code instruction

Note A line of code is defined by one and only one instruction end-
ing with a semicolon.

pinMode(LED_BUILTIN, OUTPUT);

one instruction equals one line of code

Semicolons in the code serve the same purpose as periods in
English; they denote that you have reached the end of the line. This
keeps the Arduino from misinterpreting your instructions, because
it knows you meant to end the line as soon as it sees a semicolon. If

Learn Electronics with Arduino106

you omit the semicolon, you will generate an error in the Arduino IDE
and your code won’t upload to your Arduino.

pinMode(LED_BUILTIN, OUTPUT);
semicolon

Note Semicolons end statements of code, like periods end
sentences.

Next, let’s look at the end of the line. pinMode() is followed by a set
of parentheses, which contain the text LED_BUILTIN, a comma, and
the word OUTPUT all in capital letters. pinMode() is a function that sets
our pins to behave in a particular way.

Note When we want to use a function or instruction like pinMode(),
we say that we are “calling” the function.

pinMode(LED_BUILTIN, OUTPUT);set pin mode

When you call pinMode(), you instruct the Arduino to set the pin
with the number you type to act as either an input or an output.
Instead of seeing a pin number there, you see LED_BUILTIN—which is
there instead of the pin number, because your Arduino Uno knows
that LED_BUILTIN means Pin 13. So, 13 is the number of the pin you’ll
set to OUTPUT. You haven’t wired anything to the Arduino yet, but
the Arduino already has a tiny LED wired permanently as part of
the board attached to Pin 13, which is where the word LED_BUILTIN

Programming the Arduino 107

originates. You are setting the mode for Pin 13, telling the Arduino
that you plan to use Pin 13 as an output.

Note LED_BUILTIN is connected to Pin 13 on the Arduino. Both
pinMode(13, OUTPUT) and pinMode(LED_BUILTIN, OUTPUT) have the
same outcome.

pinMode(LED_BUILTIN, OUTPUT);

pin number pin set to this

OUTPUT means that you want to control whether the pin is off or
on. OUTPUT allows you to set the pin dynamically and change its state
as your sketch continues.

setup(): It Happens Once
To recap, in our LEA4_Blink sketch setup() tells the Arduino to treat
Digital Pin 13 like an output. The Arduino is good at remembering
instructions that you tell it about pins, so you need to tell it only
once. As long as this sketch is still running, Arduino knows that Pin 13
is an output. If the Arduino gets unplugged or turned off somehow,
the first thing that happens when the Arduino restarts (within the
setup() function) is that Pin 13 is set as an output. In other words,
you don’t need to remind the Arduino what the individual pins do
over and over. You’ll put all of your pinMode() functions inside setup()
so that they run only once. Figure 4.33 shows the LED blinking.

Note setup() happens once and only once.

Learn Electronics with Arduino108

M A D E I N I TA LY

ARDUINO

POWER ANALOG IN

DIGITAL (PWM~)

UNO- +

RE
SE

T
IO

RE
F

3.
3V

5V GND Vi
n

A0 A1

A2

A3

A4

A5

ONTX
RX

AR
EF

GN
D 13 1
2

 ~
11

 ~
10

 ~

9
 8 7
 ~

6
 ~

5
 4 2 1 0

 ~
3

TX RX

RE
SE

T

ICSP

.A
R

D
U

IN
O

.C
C

L

USB cable connected
to computer

LED blinks
on and off

Figure 4.33: The LED blinking

QUESTIONS?
Q: Why should I bother putting comments in my code?

A: Sometimes when you are writing code, it’s not obvious exactly
what the code is doing, and it is very helpful to make notes to your-
self for when you come back to a sketch later on. It is also helpful
when you share your code or when you are working on a team.

Q: Does setup() always come first?

A: The Arduino knows to always run setup() first, once, and then
continue on to running the loop() section of your code. In order to
have a successful sketch, your code must include a setup() block.

Q: Can you explain again what it means that we set a pin using
pinMode()?

A: By using pinMode(), we are instructing the Arduino that we
plan to use a specific pin, in this case number 13 (also labeled as
LED_BUILTIN), within our sketch. This is necessary for the Arduino to
know which pins it will be controlling for each sketch.

Programming the Arduino 109

Q: Do I always have to set pins as outputs?

A: No, you only set pins as outputs when you want to use them to
turn things on and off. Pins can also be declared as inputs. We’ll
cover inputs in the next chapter.

Q: Is pinMode() always attached to LED_BUILTIN?

A: No, you have a lot of other pins on the Arduino you can use for
your sketch. You are using LED_BUILTIN (Pin 13) right now because it
is the only pin that conveniently has an LED attached to it.

Q: Does it matter which pins I declare?

A: You should only declare pins you plan on using in the sketch. In the
LEA4_Blink sketch, you only declare the LED_BUILTIN, Pin 13, because
you know you’re going to use that pin to turn on and off the LED.

Q: Setting the pin mode to output isn’t the only thing I will do in
setup(), right?

A: Right. There are a lot of other instructions to the Arduino that you
want to run only once, and you will put them in setup(). We’ll explain
them later on.

Looking at loop(): What
Happens Over and Over
Now that we have seen the setup() function from the LEA4_Blink
sketch, let’s take a look at the loop() function.

 void loop() {
 digitalWrite(LED_BUILTIN, HIGH);//turn the LED on (HIGH is the voltage level)
 delay(1000); //wait for a second
 digitalWrite(LED_BUILTIN, LOW);//turn the LED off by making the voltage LOW
 delay(1000); //wait for a second
}

loop() function from the LEA4_Blink sketch

Learn Electronics with Arduino110

The loop() function contains the code that you want to have
repeated over and over again. As long as the Arduino is running, this
code will keep repeating, after the code in setup() has run once.

Note loop() will continue running as long as the Arduino is on.

When you saw LEA4_Blink run on the Arduino, the LED light
blinked off and on every second. The code in the loop creates this
behavior. Let’s take a close look at what’s in loop() in our sketch line
by line.

digitalWrite(LED_BUILTIN, HIGH);// turn the LED on (HIGH is the voltage level)

first statement in this loop()

Note In an Arduino sketch, write means to set a value.
digitalWrite() will set a value of HIGH or LOW.

The first statement of code instructions inside the loop() looks
similar to the pinMode(LED_BUILTIN, OUTPUT); statement you saw in
setup(). Again you’ll be dealing with LED_BUILTIN, which is a label for
Pin 13, since you declared in setup() that your sketch uses this pin.
The digitalWrite() function in this context is used to set whether the
pin is on or off. When you write, or set the value of the pin to HIGH,
you are turning the pin completely on.

Note digitalWrite(pin #, HIGH) will turn pin # on.

Programming the Arduino 111

When the Arduino gets to this line in the loop(), it will turn on the
LED attached to Pin 13. Let’s next take a look at the second line.

Looking at loop(): digitalWrite()
and delay()
After you turn the pin on, you want to put a short delay() in the pro-
gram. This delay() will pause your program, preventing the Arduino
from reading the statement that follows for a short time. How long
does delay() pause the program? That is up to you. delay() requires
that you include between the parentheses the number of millisec-
onds (one thousand milliseconds equal one second) to wait. In this
case, you have stated that the Arduino will wait one thousand milli-
seconds, or one second, before moving on to the next statement of
the program.

 delay(1000); // wait for a second

second line in this loop()

Note The delay() function stops the Arduino from doing anything
for a short time.

Now let’s look at the third line of the loop() function.

digitalWrite(LED_BUILTIN, LOW);// turn the LED off by making the voltage LOW

third statement in this loop()

write to a pin

pin we write to

value we write to pin

This third line of code instruction inside the loop() is nearly iden-
tical to the first line, digitalWrite(LED_BUILTIN, HIGH);, except that

Learn Electronics with Arduino112

HIGH has been replaced with LOW. You are still focused on Pin 13,
which is the only pin that you use in this sketch. As you learned with
the first line, digitalWrite() determines whether the pin is on or off.
Using the Arduino to write LOW sets the pin all the way down—in other
words, off.

Note digitalWrite(pin #, LOW) will turn pin # off.

Finally, let’s look at the fourth and final line of the loop(). You’ll
put another pause in the program, this time for 1000 milliseconds,
or one second. This makes it so that the LED stays off for a full sec-
ond since the Arduino is paused for this time. The Arduino pauses for
one second and then will go back to the first line of the loop() code
again, repeating the cycle just described.

 delay(1000); // wait for a second

last line in this loop()

pause function amount of time to pause

QUESTIONS?
Q: I can change the amount of time in a delay, right?

A: Absolutely. You’ll see how to make the pauses longer and shorter,
as well as make other modifications to the code in loop(), later on in
this chapter.

Programming the Arduino 113

loop(): Looking at the Complete loop()
Function
Here’s all of the loop() code again, including the comments:

 void loop() {
 digitalWrite(LED_BUILTIN, HIGH);//turn the LED on (HIGH is the voltage level)
 delay(1000); //wait for a second
 digitalWrite(LED_BUILTIN, LOW);//turn the LED off by making the voltage LOW
 delay(1000); //wait for a second
}

loop() function from the LEA4_Blink sketch

Again, as demonstrated in Figure 4.34, loop() is run continuously,
and setup() is run once. Your loop() code will blink the light on and
off until the Arduino is unplugged.

runs once

runs repeatedly

Figure 4.34: setup() and loop()

Learn Electronics with Arduino114

Note Setting pin modes is always done in setup(). Anything
you want to run more than once should be included in the loop()
function.

Although the sketches you’ll write throughout the book will
become more complicated and include more lines of code, the
basics laid out in the LEA4_Blink sketch will continue to be your
foundation for good code. Pins only need to be declared as inputs
or outputs in setup(), and any code you want to happen more than
once should be included in loop(). Remembering these two princi-
ples will help immensely as you get into more complex projects.

You’ve seen the basics of an Arduino sketch, and looked at how
setup() and loop() functions work. After answering a few questions,
we’ll move on to reviewing schematics and look at the schematic
for the Arduino. Then, we’ll explain how to hook up your Arduino to a
breadboard so you can run LEA4_Blink and light up an LED on the
breadboard.

QUESTIONS?
Q: So whatever I put in loop() will keep repeating over and over
again?

A: That’s right. Just like the name, loop() keeps on looping through
the same lines of code, over and over again.

Q: What does the delay() function do?

A: The delay() function specifies the amount of time that the Ardu-
ino is paused, or waiting idle. During this time everything stays the
same, so if the light is on it stays on. With the delay() in this sketch,
you can see clearly that the light turns on for one second, and then
off again for one second.

Programming the Arduino 115

Q: Will digitalWrite() always be in loop()?

A: No, it will only be there when you want to set a pin and what-
ever is attached to that pin, HIGH or LOW. In this case, you use
digitalWrite() to turn the LED on or off.

Q: What exactly is a function again?

A: For now, think of a function as a way of organizing instructions
to your Arduino. We’ll explain more about them as you write more
sketches.

Q: Semicolons, curly braces…it seems like there is a lot of punctua-
tion in the sketch. How will I ever remember it?

A: It can be confusing when you start. Keep looking at the examples
and see how the punctuation is used. Curly braces mark off a block
of code, and semicolons mark the end of a line.

Q: Does the Arduino programming language have a reference guide
online?

A: Yes. arduino.cc/en/Reference/HomePage is a great place to get
more information about the language. You can use it to find out more
about the code you use in this book, and to research your own proj-
ects after finishing the book.

A Schematic of the Arduino
Now that you’ve run your code and lit the LED on the Arduino board,
you’re going to attach your Arduino to a breadboard, build a circuit,
and run your LEA4_Blink sketch again. You want to learn how to
control external components with your Arduino, not just light up an
LED on the Arduino itself, so you must attach a breadboard to hold
the components.

http://arduino.cc/en/Reference/HomePage

Learn Electronics with Arduino116

To run LEA4_Blink on the Arduino attached to a breadboard, you
won’t need to make changes to your code. When you set LED_BUILTIN
to HIGH in LEA4_Blink, it lights up the LED on the Arduino near Pin
13, and it will also set whatever is attached to Pin 13 (an LED) on a
breadboard to HIGH (a.k.a. on).

Before you start to build your circuit, let’s take a look at the sche-
matic for it. Doing so helps you visualize the electronic relationships
in the circuit.

Your schematics from now on will include a symbol for the
Arduino. Figure 4.35 shows a schematic for the Arduino, with all
the digital, analog, and power and ground pins labeled with their
numbers or function, placed next to a drawing of the Arduino Uno
for comparison. Don’t worry about memorizing the pin numbers
and functionality now—we’ll explain more about the pins and their
uses later.

IOREF

RESET

3.3V

5V

GND

GND

Vin

A0

A1

A2

A3

A4

A5

AREF

GND

13

12

PWM 11

PWM 10

PWM 9

PWM 6

PWM 5

PWM 3

TX 1

RX 0

8

4

2

7

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Arduino Uno schematic Arduino Uno with pins labeled

power and
ground pins

power and
ground pins

analog pins
marked with A analog pins

digital pins

digital pins

Figure 4.35: Arduino schematic and board

The schematic for the Arduino looks much more complicated than
the other schematics you’ve seen previously. Its complexity reflects
the number of connections possible with the Arduino hardware.
Rather than try to cram this detailed Arduino schematic into the

Programming the Arduino 117

schematic of every circuit you build, you’ll use a simplified version: a
rectangle that represents the Arduino, with labels only for the com-
ponents you’re using in that circuit. Let’s see a full schematic of the
circuit you’re going to build with the Arduino.

The Schematic for Your Circuit
For the sake of clarity, when you include the Arduino in your sche-
matics, you’re only going to label the pins that are attached to the
circuit you’re building. For example, Figure 4.36 shows the sche-
matic for the circuit you’re about to build. Only Pin 13, 5 volts, and
ground are shown, as well as the LED and resistor.

5V
GND

13

The simplified Arduino
symbol we’ll use in

our schematics

ground pin

Pin 13

resistor

LED

Figure 4.36: Schematic for LEA4_Blink circuit

Now that you’ve looked at the schematic, let’s see how you’re
going to build the circuit. You’ll start from the circuit you made in
Chapter 3 (Figure 4.37).

Learn Electronics with Arduino118

Figure 4.37: Circuit from Chapter 3

Building the Basic Circuit
Now that you’ve taken a look at the schematic, let’s build the circuit.
You’re going to run your LEA4_Blink sketch and light up an LED on
a breadboard. You’re attaching a breadboard with a resistor and
LED to the Arduino—the program that runs on the Arduino will not
change. The Arduino will be the power source for your circuit when it
is attached to a computer with a USB cable.

Warning Remember, whenever you make adjustments to a cir-
cuit, your Arduino should not be attached to your computer.

Programming the Arduino 119

You will need these parts:

▨▨ LED (red)

▨▨ 220-ohm resistor (red, red, brown, gold). This is different from
the one you used in the previous chapter.

▨▨ Jumper wires

▨▨ Breadboard

▨▨ Arduino Uno

▨▨ USB A-B cable

▨▨ Computer with Arduino IDE

Figure 4.38 compares a drawing of this project to a schematic of
the completed circuit. As you can see, the circuit uses a resistor and
LED like the circuit you built in Chapter 3.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

5V
GND

13

resistor

LED

Pin 13

5V

ground

circuit illustration circuit schematic

Figure 4.38: Labeled Arduino breadboard and schematic annotated

Connecting the Arduino to a Breadboard:
First Steps
You want to build circuits with your Arduino, not just light up an LED
on the Arduino board, so you’re attaching it to a breadboard. How
do you do that?

Learn Electronics with Arduino120

We first mentioned using the power and ground pins on the
Arduino in Chapter 2. These two pins allow you to use electricity
from the Arduino to power the components in your circuit, replacing
the 9-volt battery you previously used.

To use the pins, start by attaching a jumper from the pin marked 5V
to one of the power buses on your breadboard. Then attach a jumper
from one of the pins marked GND (which stands for ground) to one of
the ground buses on the breadboard. This is shown in Figure 4.39.

Warning Make sure your computer is not attached to the Arduino
when you are building a circuit.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

ICSP

.ARDUINO.CC

L

GND

detail of the Arduino

detail of the breadboard

5V power pin

ground pin

power bus ground bus

Figure 4.39: Attaching power and ground to the breadboard

Programming the Arduino 121

It is standard procedure to attach both power (5V) and ground
(GND) to the breadboard when attaching a breadboard to an Ardu-
ino. Even if you don’t use the power right away, it can be handy to
have later as you add more components to the circuit. In this circuit,
instead of using the 5V from the power pin, you’ll be using Pin 13 to
provide power for the LED.

Building the Circuit Step by Step:
Connecting the Pin and Resistor
Now that the Arduino and breadboard are connected, connect Pin
13 on the Arduino board to a line of tie points in the breadboard with
a jumper, as you see in Figure 4.40.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6

RESET

L

GND

D
I
G
I
T
A
L

(
P
W
M
~
)

AREF

13
 12

 ~11

GND

detail of the Arduino

Pin 13 attached to row of
tie points on breadboard

Figure 4.40: Adding a jumper from the pin to the breadboard

Next, put one end of a 220-ohm resistor (which has bands
marked red, red, brown, gold) in the same row of tie points as the
jumper from Pin 13. Put the other end into another row of tie points
(Figure 4.41).

Learn Electronics with Arduino122

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
O

D
I
G
I
T
A
L

(
P
W
M
~
)

-
TXRX AREF

13
 12

 ~11
 ~10
 ~9

RESET

L

GND

other end of resistor in
different row of tie points

one end of resistor
attached to Pin 13

Figure 4.41: Adding the resistor to the circuit

Building the Circuit Step by Step:
Connecting the LED
Put the anode (long lead, positive end) of the LED in the same row
of tie points as the other end of the resistor. Put the cathode (short
lead, negative end) in another row (Figure 4.42).

D
I
G
I
T
A
L

(
P
W
M
~
)

AREF

13
 12

 ~11
 ~10
 ~9

RESET

GND

detail of resistor and
anode of LED connected

anode of LED

cathode of LED

Figure 4.42: Adding the LED to the circuit

Programming the Arduino 123

Next, add a jumper that connects the cathode (short lead, nega-
tive end) of the LED to the ground bus (Figure 4.43).

D
I
G
I
T
A
L

(
P
W
M
~
)

AREF

13
 12

 ~11
 ~10
 ~9

RESET

GND

detail of cathode of LED
jumped to ground bus

jumper attached to
ground bus

cathode of LED

Figure 4.43: Adding a jumper from the LED to ground

Building the Circuit Step by Step: Attach
to Your Computer
Finally, connect the USB cable that is attached to the computer to
give your circuit power (Figure 4.44).

Figure 4.44: Attaching the Arduino to your computer

Learn Electronics with Arduino124

The LED should start blinking on the breadboard (Figure 4.45).
Your circuit is like the basic circuit you created in the previous chap-
ter, but now your LED flashes on and off, controlled by your Arduino,
which is running the LEA4_Blink sketch. You have more control over
your LED by using the Arduino; you have added the element of timing.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+
RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L
GND

Figure 4.45: The blinking LED

QUESTIONS?
Q: My LED didn’t light up—what’s wrong?

A: Remember the section about debugging the circuit from Chap-
ter 3? Check the continuity by looking carefully at the board or using
your multimeter. Make sure the LED has the correct orientation. Also
check that your jumpers are attached properly to the breadboard
and to the Arduino.

Programming the Arduino 125

Q: I didn’t change the code in the LEA4_Blink sketch; why does this
work?

A: The code in the LEA4_Blink sketch controls the LED_BUILTIN on
the Arduino Uno. The tiny built-in LED is connected to the Arduino
board on Pin 13, but the code in the sketch will also control any com-
ponents that are attached to Pin 13.

Q: Tell me again why we connected 5 volts to the breadboard when
it doesn’t appear we’re using it?

A: It is a convention to attach power and ground to the power and
ground buses on a breadboard when you set it up. As you build more
complex circuits, you’ll eventually be using the power bus. This circuit
gets the power from the pin on the Arduino.

SOS Signal Light: Creating
More Complex Timing
While the previous circuit ended up being very similar to the project
in Chapter 3, you have accomplished something by hooking it up to
the Arduino and discovering the possibilities of code. Earlier in this
chapter, you saw that you can make one light blink on and off with a
few very simple lines, and the opportunity for complexity just grows
from this basic starting point.

Now you’ll work on the code, adjusting it to create an SOS
signal light, a light that uses Morse code to convey an SOS mes-
sage by a blinking light pattern. This is a pattern of three short light
flashes, followed by three long flashes, and finally three more short
flashes with a long pause at the end before the pattern repeats
(Figure 4.46).

Learn Electronics with Arduino126

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

Arduino and breadboardcode for LEA4_SOS signal light

Figure 4.46: LEA4_SOS sketch and circuit

You can see by looking at Figure 4.46 that the hardware (the
Arduino and breadboard with components) does not change at all.
All the changes to make the LED blink in an SOS pattern will go in
the sketch you write in the Arduino IDE. You don’t need to disconnect
your Arduino from your computer if you’re adjusting the code—only
when you’re adjusting components on the circuit.

Note The Arduino can remain connected to your computer if you’re
adjusting code only, but not when you’re changing the hardware.

Save Sketch and Rename
Select Save As and rename your sketch LEA4_SOS. Some of this
new sketch will have the same code you just used, and you’ll be
adding substantial new code. The code inside setup() will have one
minor change and the code in loop() will become much longer. Let’s
review the LEA4_Blink code, then revise the code in loop().

Programming the Arduino 127

Reviewing and Revising Code: What Do You Change?

Let’s first take a look at the setup() code. After a comment that tells
you what the following line does, there is a line that sets LED_BUILTIN,
connected to Pin 13 as an output. Instead of leaving it as LED_BUILTIN,
you’re going to change this setup() code to include the line pinMode(13,
OUTPUT).

void setup() {
 // put your setup code here, to run once:
 pinMode(13, OUTPUT);
}

setup() code

curly braces
set Pin 13 to output

Note You’re changing LED_BUILTIN to 13 in the pinMode() in the
setup() code.

Unlike the code in setup(), the code in loop() will be revised and
added to extensively. Let’s review the code from the LEA4_Blink
sketch before you make changes.

The first line in the loop() sets LED_BUILTIN to HIGH, turning on the
LED. delay() then pauses the Arduino—in this instance, for 1000
milliseconds, or one second. Next you set LED_BUILTIN to LOW, turning
off the LED. delay() pauses again for 1000 milliseconds. Since the
code in loop() repeats over and over again, the LED is blinking on
and off.

void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

loop() code

sets pin high

sets pin low
pause one second

pause one second

Learn Electronics with Arduino128

Let’s look at how you are going to revise loop().

Adjusting loop() in the SOS Sketch

Your code for the SOS signal will be three short flashes of the LED
followed by three long flashes, then another three short flashes, with
a final pause before the code repeats again. You’ll write the code for
the three short flashes first. We’ll look at all of it first, and then break
it down line by line. We’ll also reference Pin 13 by its number, replac-
ing all mentions of LED_BUILTIN from the LEA4_Blink code.

Three Short Flashes On and Off
After a comment that states what the code does, Pin 13 is set to
HIGH, followed by a delay, then set to LOW, followed by a delay. This is
repeated three times.

 // 3 short flashes
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(300); //pause for 300 milliseconds, about 1/3 of a second
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(300);
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(300);

Let’s take a closer look. The first line of code inside loop() will stay
the same as in your LEA4_Blink sketch. As you have seen, this line
sets Pin 13 to HIGH.

digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

set Pin 13 to high

Programming the Arduino 129

You’re going to make an adjustment to the next line of code. Remem-
ber, the delay() function creates a pause, measured in milliseconds. In
your original sketch you paused for 1000 milliseconds, or one second.
You want a shorter pause now, 500 milliseconds, or half a second. Let’s
change the comments to reflect what your code is doing.

delay(500); // wait for a half second

pause for 1/2 second

Your next line will set the pin LOW, or turn off the LED. You can
leave this line as it is, since there is no need to change it from the
LEA4_Blink sketch.

digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

set Pin 13 to low

However, you’ll make a change in the number of milliseconds in
delay(). In your LEA4_Blink sketch, the delay was 1000 milliseconds,
or one second. Now you’ll pause 300 milliseconds, about a third of a
second. You’ll adjust the comments as well.

 delay(300); //pause for 300 milliseconds, about 1/3 of a second

pause for 300 milliseconds

Here is the complete cycle:

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(300); //pause for 300 milliseconds, about 1/3 of a second

Learn Electronics with Arduino130

You want to repeat turning on and off the LED three times. Let’s
first add a comment indicating what this part of the code does, then
copy two more cycles of turning on and off. Here is the code again:

 // 3 short flashes
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(300); //pause for 300 milliseconds, about 1/3 of a second
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(300);
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(300);

Now let’s look at the code for the longer flashes.

Adding the Three Long Flashes On and Off
The three long flashes section is very similar to the short flashes sec-
tion. After the pin is set to HIGH, the delay() function pauses for 1500
milliseconds, or one and a half seconds, keeping the LED turned on.
Let’s look at all of the long-flash code first. A comment states what
the code immediately following does.

 // 3 long flashes
 digitalWrite(13, HIGH); // turn the LED on
 delay(1500); // wait for a second and a half
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(300);
 digitalWrite(13, HIGH);
 delay(1500);
 digitalWrite(13, LOW);
 delay(300);
 digitalWrite(13, HIGH);
 delay(1500);
 digitalWrite(13, LOW);
 delay(300);

Programming the Arduino 131

Again you have a repeating cycle of setting the pin to HIGH, paus-
ing, setting the pin to LOW, pausing, three times. First you set the pin
to HIGH.

digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

set Pin 13 to high

Then you pause with the delay() function, this time for 1500 mil-
liseconds, or a second and a half. The comments have also been
changed to reflect the adjusted amount of time.

 delay(1500); //wait for a second and a half

pause for 1 1/2 seconds

Just as in the code for the short flashes, you must set the pin to
LOW, then pause with delay().

digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

set Pin 13 to low

You’ll then use the same number of milliseconds as delay()
between the short flashes, 300 milliseconds.

 delay(300); //pause for 300 milliseconds, about 1/3 of a second

pause for 300 milliseconds

Again, you’re creating a cycle that is going to repeat. After the
last short flash cycles, you’ll make the pause last longer to make
each SOS signal discrete. Let’s look at that, and then look at all the
code in loop() together.

This final line of code in loop() pauses the Arduino for 3000 mil-
liseconds, or 3 seconds. This follows a line that has set Pin 13 to LOW.

Learn Electronics with Arduino132

You want a longer pause between each SOS signal to make sure
viewers can distinguish between cycles.

 digitalWrite(13, LOW);
 delay(3000); //final delay is 3 seconds

final lines in loop()

QUESTIONS?
Q: I didn’t change my code from LED_BUILTIN to 13. Why does it
still work?

A: LED_BUILTIN is the same as Pin 13, so even if you switch between
the two, your sketch will still work. It is best to pick only one so as not
to confuse what is happening in your sketch.

All of the SOS loop() Code
Now let’s look at all of the code in loop(). It is long, so we’re breaking
it up into sections.

void loop() {
 // 3 short flashes
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(300); //pause for 300 milliseconds, about 1/3 of a second
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(300);
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(300);

loop() declaration and start curly brace

3 short flash code

Programming the Arduino 133

 // 3 long flashes
 digitalWrite(13, HIGH); // turn the LED on
 delay(1500); // wait for a second and a half
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(300);
 digitalWrite(13, HIGH);
 delay(1500);
 digitalWrite(13, LOW);
 delay(300);
 digitalWrite(13, HIGH);
 delay(1500);
 digitalWrite(13, LOW);
 delay(300);

3 long flash code

 // 3 short flashes again
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(500); // wait for a half second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(300); //pause for 300 milliseconds, about 1/3 of a second
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(300);
 digitalWrite(13, HIGH);
 delay(500);
 digitalWrite(13, LOW);
 delay(3000); //final delay is 3 seconds
}

3 short flash code

final delay is 3000 milliseconds

curly brace closes the loop code

After you’ve written your code for the SOS signal light and saved
it, click the Verify button to check for errors (Figure 4.47).

verify

Figure 4.47: Successful verify

If it is okay, make sure your computer is attached to your Arduino,
and that you have the correct board and port selected. Then click
the Upload button to upload your code to the Arduino (Figure 4.48).

Learn Electronics with Arduino134

upload

Figure 4.48: Successful upload

What does the LED look like now on the board?

SOS Signal Light Flashes On and Off!
Your LED should now be flashing an SOS signal: three short bursts,
followed by three long flashes, three short bursts again, a 3-second
pause, then the whole pattern starting over and over again. There
are other, more efficient ways to write the code, but for now we
want you to make adjustments and understand what the code is
doing by seeing the results in your circuit (Figure 4.49).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

LED flashes on and off
in an SOS signal pattern

Figure 4.49: LED flashing SOS

Programming the Arduino 135

Summary
You’ve set up the Arduino IDE, learned how to verify and upload
code, seen how to attach a breadboard to an Arduino, and
explored writing a sketch in the Arduino programming language.
You can download the code for LEA4_SOS from https://github.com/
arduinotogo/LEA/blob/master/LEA4_SOS.ino.

In the next chapter, you’ll learn more about writing code in the
Arduino programming language and how to attach different types
of components to a circuit.

https://github.com/�arduinotogo/Programming
https://github.com/�arduinotogo/LEA/blob/master/LEA4_SOS.ino
https://github.com/�arduinotogo/Programming

What are voltage, current, and resistance? How are
they related? And why should you care?

In this chapter, you’ll learn about voltage, current, and
resistance and how they interact with each other. This will
help you understand how your circuits are working and
how to make adjustments to them. You’ll also learn how
to use the multimeter to measure these properties. This
knowledge will help you debug your circuits and also get
you on your way to designing and building your own pro
jects from scratch.

Electricity
and Metering 5

Learn Electronics with Arduino138

Understanding Electricity
Electricity is the flow of electrons through a material, as you can see
in Figure 5.1. In the projects in this book, electrons flow through care-
fully arranged and specified paths—through our circuits.

+ -

Figure 5.1: Electricity flows through a circuit.

Electricity has three main properties: voltage, current, and resis-
tance. In this chapter, you’ll see how these properties interact with
each other, in a fundamental relationship called Ohm’s law. You’ll
also learn how placing components in different arrangements
affects the electrical properties in a circuit.

Why are we looking at electrical properties, and not just building
more circuits with our Arduino and other components? If you don’t
understand a bit about how these properties work in a circuit, it will
be very difficult to move on to building your own circuits after you’ve
completed all the projects in this book. Also, without some under-
standing of these properties, troubleshooting your projects is next to
impossible. In this chapter, you’ll learn more techniques for debug-
ging your projects.

Electricity and Metering 139

Measuring Electrical Properties with
Your Multimeter
Remember the multimeter (Figure 5.2) from Chapter 3, “Meet the
Circuit”? You learned how to set it up to test for continuity (whether
your components are connected to each other). The multimeter
helps you debug problems in a circuit. By testing for continuity, for
example, you can verify that your circuit is a complete loop. In this
chapter, you’ll learn how to use the multimeter to measure voltage,
current, and resistance. Why do you need to do this? Testing voltage
will help you analyze problems with your circuits; for example, is your
circuit getting voltage? How much voltage is each of your compo-
nents consuming?

Note Understanding how voltage, current, and resistance interact
in a circuit helps you troubleshoot your projects as well as build new
circuits.

Figure 5.2: The multimeter

If you’re going to use a multimeter to test electrical properties in
a circuit, you’ll first need to build a circuit. Let’s start with a basic cir-
cuit that contains one LED, a resistor, a breadboard, and an Ardu-
ino. You won’t write an Arduino sketch this time; instead, you’ll simply
use the Arduino as a power source. You’ll check the voltage coming
out of the Arduino, and then test the voltage across each compo-
nent. You’ll then add a second LED to the breadboard and see how

Learn Electronics with Arduino140

the electrical properties of the components change depending on if
you place them in a series or in a parallel arrangement. We’ll explain
exactly what we mean by all of this shortly.

Build the Circuit
Step by Step
To build the basic circuit described in this chapter, you’ll need the fol-
lowing parts:

▨▨ 1 red LED

▨▨ 1 220-ohm resistor (red, red, brown, gold)

▨▨ Jumper wires

▨▨ Breadboard

▨▨ Arduino Uno

▨▨ USB A-B cable

▨▨ Computer

This circuit is quite similar to the circuit you built in Chapter 4,
“Programming the Arduino.” The one difference is that you aren’t
powering the LED from a pin on the Arduino but from the 5-volt
power bus on the breadboard.

Build!
As we said earlier, there is one major difference in this circuit, shown
in Figure 5.3, from the one you built in Chapter 4: you aren’t con-
necting it to a digital pin on the Arduino. Instead, you’re going to
get power from the power bus on the breadboard. Remember, the
power bus is connected by a red jumper to the pin marked 5V (for 5
volts) on the Arduino.

Electricity and Metering 141

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

5V
GND

the completed circuit plugged in schematic for the circuit

 Figure 5.3: The circuit with the schematic

Before we start building, let’s take a look at the block of power
and ground pins, shown in Figure 5.4. There is a pin marked 5V, and
also one marked 3.3V, as well as pins marked GND for ground.

P
O
W
E
R

RESET
IOREF

3.3V
5V

GND

Vin

3.3 volt Pin
5 volt Pin

Ground Pins

Figure 5.4: Power and ground pins on Arduino

Learn Electronics with Arduino142

Although we have been building our circuits using 5V, you can
also use 3.3V to build some circuits with components that require
less voltage. The 3.3V port works the same as the 5V except it puts
out a lower amount of voltage.

Here are the steps to build the circuit, shown in Figure 5.5:

	 1.	Attach one end of a jumper to the 5V pin on the Arduino, and the
other end of the jumper to the power bus on your breadboard
(that’s the column marked with a red +).

	2.	Grab another jumper and attach one end to the GND pin on the
Arduino, and the other end to the ground bus on your bread-
board (that’s the column marked with the green –).

	3.	Connect a jumper from the power bus to a row of tie points.

	4.	Connect one lead of a 220-ohm resistor to the same row of tie
points. The other end goes in another row of tie points.

	5.	Connect the anode (long leg) of the LED to the other lead of the
resistor.

	6.	Attach a jumper from the cathode (short leg) of the LED to the
ground bus.

M
A

D
E

 IN
 ITA

LY

P
O
W
E
R

A
N
A
L
O
G

I
N

RESET
IOREF

3.3V
5V

GND

Vin

A0

jumper connects
resistor to power bus

resistor connected
to anode of LED

cathode of LED
 connected to jumper

jumper connects
 to ground bus

detail of breadboarddetail of jumpers attached to Arduino 5V and GND

jumper attached
 to 5V

jumper attached
 to ground

Figure 5.5: A circuit with details of power and ground pins on Arduino and the
components on the breadboard

When you have the circuit built, use the USB cable to attach your
Arduino to your computer. We aren’t going to write a sketch; you’re
just using your computer as a power source for the Arduino.

Electricity and Metering 143

Debugging the Circuit
If your LED lights up when you attach the USB cable to your com-
puter, you can skip to the next page. If not, let’s troubleshoot, or
“debug” the circuit.

You learned about debugging in the earlier chapters. As a
reminder, it is defined as the process by which you methodically check
your project to eliminate any issues that might be causing problems.

Check that power and ground are connected to the breadboard
buses and the correct ports on the Arduino. Figure 5.6 shows them
connected improperly.

Check that the LED is oriented correctly (anode connected to
resistor that is connected to power, cathode attached to jumper
that is attached to ground). Figure 5.7 shows what it should look like.

P
O
W
E
R

RESET
IOREF

3.3V
5V

GND

Vin

power and ground jumpers NOT attached properly

jumper NOT attached to power bus jumper NOT attached to GND on Arduino

Figure 5.6: Power and ground on Arduino and breadboard improperly attached

anode (long lead) attached
to resistor attached to power

cathode (short lead)
attached to jumper to ground

LED is oriented properly

Figure 5.7: Check the orientation of the LED.

Learn Electronics with Arduino144

Check the continuity; the leads of the components that are sup-
posed to be connected need to be in the same row of tie points. Fig-
ure 5.8 shows a circuit where the components are not connected.

resistor and anode
of LED are
NOT CONNECTED

cathode of LED
 and jumper to ground
 NOT CONNECTED

components in WRONG row of tie points

Figure 5.8: Components not connected

Now that you have your circuit fully functional, let’s discuss how
electricity is flowing through the circuit.

QUESTIONS?
Q: Why are you putting so much emphasis on debugging?

A: In any electronic project, many things can potentially go wrong. It
is smart to maintain a comprehensive approach to error checking.

Electricity: An Overview
Electricity is the flow of electrons through a material. Electricity
requires a closed loop to flow from beginning to end. Your circuits
create a closed loop with conductive lines and components. The
electricity follows the paths of the circuit. Figure 5.9 shows the path
of electricity in the circuit you just built.

Electricity and Metering 145

Note This discussion of electricity is simplified. We wanted to
reduce the complexity of explanations to better fit with the small-
scale electronics projects we’re building. This is not an adequate
primer for a complete understanding of electricity or of complex
electronic theory.

5V
GND

the flow of electricity in this circuit

Figure 5.9: Schematic with electrical flow indicated

How Does Electricity Behave?
Materials can be broken down into two different types. The first type
of material is conductors, which are good at letting electricity flow.
Wires are made of metal because it is a good conductive material.

Learn Electronics with Arduino146

The second type of material is insulators, which resist the flow of
electricity. Rubber is one example of an insulator.

Note Conductors let electricity flow, whereas insulators restrict
the flow.

AC and DC Current
There are two different types of electrical flow: alternating current
(AC) and direct current (DC). The electricity that comes out of your
wall socket is AC, whereas our Arduino and many small electronic
projects and components use DC. In alternating current, repre-
sented by the drawing in Figure 5.10, the flow of electricity changes
direction. In direct current there is only one direction to the flow.

alternating current waveform symbol for AC

Figure 5.10: Alternating current

One of the major benefits of AC is that it can be distributed over
great distances, something that is much more complicated with
DC. AC is also able to increase the amount of voltage supplied
much more efficiently than DC. Small-scale electronics projects,
such as those we create with the Arduino, do not need to transport

Electricity and Metering 147

the electricity great distances, nor do they generally require large
amounts of voltage. For these reasons, our descriptions of electricity
will be restricted to direct current, which we describe in more depth
in the following pages. Direct current, which most small-scale elec-
tronics projects use, is represented by Figure 5.11.

symbol for DCdirect current waveform

Figure 5.11: Direct current

Warning Electricity is dangerous. Don’t try using anything that
involves alternating current!

QUESTIONS?
Q: Is a battery direct current?

A: Yes, a battery uses direct current.

Q: Is the power supply we use with the Arduino AC or DC power?

A: The power supply for the Arduino actually converts AC into DC
power. It uses a transformer, which we are not going to cover in
this book.

Learn Electronics with Arduino148

Understanding Electricity:
The Water Tank Analogy
Let’s look at the three main properties of electricity: voltage, cur-
rent, and resistance. We’re exploring how electricity works in DC; AC
works somewhat differently, and we aren’t addressing it here. This
chapter provides enough information about these properties to let
you build your own Arduino projects; however, if you have a deeper
interest in electronics and electrical engineering, you’ll need to know
more than the simplified overview presented here. We suggest
these titles: Getting Started in Electronics, by Forrest M. Mims, III
(Master Publishing, Inc., 2003); Make: Electronics: Learning Through
Discovery, 2nd Edition, by Charles Platt (Maker Media, 2009); and
Practical Electronics for Inventors, 4th Edition, by Paul Scherz and
Simon Monk (McGraw-Hill Education, 2016).

To help you comprehend how voltage, current, and resistance
interact with one another, we’ll use a common analogy that relates
electrical properties to a water system, shown in Figure 5.12. On

PUMP

flow of water
represented by arrows

upper tank

lower tank

turbine

resistor

light bulb

voltage
source,

the battery

flow of current
represented by arrows

Figure 5.12: The water analogy for electricity

Electricity and Metering 149

the left, you see an electrical circuit that has a voltage source, a
light bulb, and a resistor. The flow of electricity is represented by the
arrows. On the right is a water system, with a pump, two tanks of
water, a turbine, and pipes connecting all of the pieces. The flow of
water is represented by arrows.

QUESTIONS?
Q: Why do we use the water analogy to understand electrical
properties?

A: Electrical concepts are necessarily abstract and difficult to visu-
alize. Although the water analogy is a simplification of how electrical
properties work, it helps you to conceptualize their interaction.

How do we use this analogy to understand the properties of elec-
tricity? Let’s look at voltage first. In our electrical system, we have
a voltage source: a battery. What is this analogous to in our water
system?

Voltage: The Potential
In our water system, water has a potential to fall from the upper
tank, moving through the turbine to the lower tank. When the water
gets to the lower tank, it has no more potential to fall (because it’s
already at the lowest point in the system). If we increase the amount
of water in the upper tank, we increase the pressure, or the potential
for the water to fall. If there is increased water pressure, the turbine
will turn faster, producing more work. If we decrease the amount of
water in the tank, there is less pressure or potential to fall and so the
turbine will turn more slowly, doing less work (Figure 5.13).

Learn Electronics with Arduino150

PUMPPUMP

water tank full: high pressure (potential) less water in tank: low pressure (potential)

more water in
tank creates
higher pressure

less water in
tank = lower
pressure

turbine turns
more slowly

turbine turns
faster

all water
flows to

the lower
tank

Figure 5.13: Voltage in the water analogy

How does this relate to voltage? In our electri-
cal system, the electrons have the potential—that
is, they have the pressure to flow from an area
of higher charge to lower charge. Similar to more
water making the turbine spin faster, in a circuit, a

higher voltage source makes the light shine brighter (more electrical
potential), whereas a lower voltage source (less electrical potential)
makes the light dimmer, as shown in Figure 5.14. This potential is
also known as the electromotive force.

Note Electromotive force is the potential for electricity to flow.

Similar to the way water always flows downhill (from a higher point
to a lower one), electricity has to flow from a higher voltage point
toward a lower voltage point. Measuring voltage involves measuring
the difference between the pressure at any two points in the system.
It is always a relative value, measuring the difference between two
points. Figure 5.15 shows the schematic and the electrical model, with
the flow of electricity marked from power to ground.

symbol for DC voltage

Electricity and Metering 151

comparing differing voltage sources in our electrical model

light is
brighter light is

dimmer

lower
voltage
source

higher
voltage
source

Figure 5.14: Electrical model with differing voltages

our electrical modelschematic of circuit

power

ground
ground

power

symbol for
light bulb

Figure 5.15: Our electrical model with the schematic

Learn Electronics with Arduino152

Note Voltage is the difference in electrical potential between any
two points in the circuit.

As the electricity travels through a circuit and its components,
from a point of higher to lower voltage, this electric potential is con-
sumed and used up by the components it flows through until there is
no more potential energy. This zero point, measured at zero volts, is
also known as the electrical ground. It is analogous to the lower tank
in the water circuit, the lowest point in the system, where the water
can’t fall any lower—it has no more potential to fall. This is the same
ground that we’ve talked about in our circuit diagrams and on our
Arduino.

Note Zero volts (the point of no electric potential) is known as
ground.

QUESTIONS?
Q: So is the ground you said is zero volts the same ground we’ve
been talking about in our circuits since Chapter 3?

A: Yes, ground is a reference point in a circuit with the electrical
potential equal to zero.

What’s the Voltage Value for an Arduino?
You may be familiar with voltage as appliances, electronics, and
electrical components all often list a voltage rating. Most small-scale
electronics, like phone chargers, use between 3 and 12 volts DC.

Electricity and Metering 153

Our Arduino operates at 5 volts. Remember how you connected
the breadboard to the pin marked 5V on the Arduino? When your
Arduino is plugged into your computer, it is getting 5 volts from the
computer. In your circuits, the components (the LED, for example)
use up some of the voltage. The resistors you’ve used in your circuits
allow you to change (reduce) the value of the voltage, which you’ll
learn more about later in this chapter.

Now that you’re familiar with voltage, let’s see how you measure
it with a multimeter.

Checking the Voltage
Why measure voltage? It is critical to know that your breadboard
and components are receiving voltage; this is always one of the first
steps to take in debugging your electronics projects.

We are continuing to use our multimeter from SparkFun (Spark-
Fun part number TOL-12966). Back in Chapter 3, you saw that the
multimeter has probes that have to be in the correct ports to mea-
sure different electrical properties. Let’s check the probes to make
sure they are in the right ports, and then set the dial on the multi-
meter to measure voltage.

Measuring Voltage

Make sure the black probe is in the COM (common) port and the red
probe is in the port marked mAVΩ on the right side of the multime-
ter, as shown in Figure 5.16. Then turn the dial to the section that
measures DC voltage. When measuring voltage, you need to set the
dial on the meter to a value above what your estimated voltage is.
For example, you know that the Arduino puts out 5 volts, so set the
dial to 20V.

Tip When measuring voltage, set the dial to a value greater than
what you think your reading will be.

Learn Electronics with Arduino154

black probe in COM port red probe in mAVΩ port

symbol for DC Voltage

dial is set
to 20V DC

Figure 5.16: Settings on multimeter to measure DC voltage

We told you that 5 volts are coming out of the Arduino—let’s
check with the multimeter to see if that’s true.

Grab a new jumper and stick one end of it into the power bus on
the breadboard. The other end should not be connected to anything.
Then connect a different spare jumper to the ground bus, with the
other end loose. Don’t let the “loose” ends of the jumpers touch each
other, or you will cause a short circuit, where the path of electricity
takes a shortcut to ground and potentially damages your Ardu-
ino. You can reduce the chance of a short circuit by keeping space
between your two leads.

Warning A short circuit allows electricity to travel along an unin-
tended path; it can damage your circuit.

Next, touch the metal end of the jumper that’s attached to the
power bus with the red probe, and touch the metal end of the
jumper attached to the ground bus with the black probe, as shown
in Figure 5.17.

Electricity and Metering 155

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

A
R

D
U

IN
O

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+
O

N

 12
 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

ICSP

detail of probes touching jumpers

checking the voltage out of the Arduino

Figure 5.17: Metering the voltage on the breadboard from the Arduino

On the multimeter’s screen, you should see the number 5, though
that number may be a bit lower. Our meter read 4.96. This is the
amount of voltage that comes out of the Arduino and that is going
into the breadboard. The slight difference has to do with the resis-
tance in the breadboard, the components, and/or the Arduino’s
internal circuitry.

What if your screen shows a negative number? That means you
probably have the probes reversed; the red probe touching the
jumper attached to the ground bus and the black probe attached to
the power bus. Try switching the probes to the opposite jumpers and
you should get a positive number.

If you see the number 1, it means that the dial on your multimeter
is set to the incorrect value. Simply increase the value of the voltage
dial to the next level by turning it clockwise. Then you should see an
accurate value.

Tip If your multimeter is showing odd values, check that your volt-
age dial is greater than the expected voltage. If you have a negative
voltage, switch the location of your probes.

Learn Electronics with Arduino156

After you have measured the voltage, remove the jumpers (you
don’t want to cause a short circuit by letting them touch each other
accidentally). We’re going to measure the voltage across the com-
ponents in the circuit.

Warning Don’t forget to turn off your multimeter when you aren’t
using it, or you’ll run down the battery.

Checking Voltage across the Components
Now you’ll measure the voltage across the resistor and across the
LED. Doing so will show you how much voltage each component is
“using up.”

Keep the dial of the meter at the spot marked 20VDC. Your Ardu-
ino should still be attached to your computer to give your Arduino
power. Touch the red probe to the end of the resistor attached to the
jumper to the power bus, and the black probe to the other end, as
shown in Figure 5.18. What do you see on the multimeter’s display?

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

Figure 5.18: Measuring the voltage across the resistor

Electricity and Metering 157

Now touch the anode of the LED with the red probe and the
cathode with the black probe to see how much voltage is being
consumed by the LED. Figure 5.19 shows a detail of the probes of
the multimeter attached across the resistor and across the leads
of the LED.

detail of probes touching resistor
to measure voltage across the resistor

detail of probes touching LED to
measure voltage across the LED

Figure 5.19: Details of measuring voltage in the circuit

The display on the meter should read something like 3.06 for
the resistor and 1.86 for a red LED. These numbers will also vary,
partially based on what color LED you’re using. Don’t worry that
this doesn’t add up exactly to 5 volts. The number displayed on the
meter is the amount of voltage that the LED is using. When we mea-
sure voltage across a component like this, it is called measuring the
voltage drop. Voltage drop is the amount of voltage consumed by a
component.

Voltage Drop
If voltage drop is the amount of voltage consumed by a component,
what does this mean for our circuits? Each of our components will
consume some of the voltage provided by our power source, until
all of the voltage is consumed, as shown in Figure 5.20. If we only

Learn Electronics with Arduino158

have one component (say, if we just placed our LED in without our
resistor), then all of the voltage would flow through the one com-
ponent and burn out our LED. How do we determine the amount of
voltage a component consumes without damaging the component?
Remember data sheets, which we discussed in Chapter 2, “Your
Arduino”? They will have this information. We’ve already shown you
how to measure this voltage drop, but later in this chapter we’ll also
cover how to calculate the value ahead of time.

the resistor consumes the first
part of the voltage. In our case,
it used 3.06 volts

the voltage left over is consumed
by the LED, bringing it down to
0 volts, also known as ground

Figure 5.20: Visualizing the voltage drop

Note Voltage drop is the amount of voltage consumed by a com-
ponent. The components in your circuit will consume all of the pro-
vided voltage.

Electricity and Metering 159

QUESTIONS?
Q: What are we measuring when we check the voltage across the
component?

A: The number on the multimeter for voltage is the difference
between the voltage going into the component and what comes out
the other side. This allows us to see how much voltage the compo-
nent uses.

Q: So voltage drop across a component refers to how much voltage
that component is using up?

A: Yes. As you saw when we metered our components, each one is
consuming some of the total voltage in the system.

Q: What happens if our components don’t use up all of the voltage?

A: The components will always use up all of the voltage provided,
and if a higher voltage is provided, the values they consume will scale
to a higher value.

Now that you know what voltage is and how to measure it in a
circuit, let’s go back to the water analogy and look at current.

Current: The Flow
In our water model, shown in Figure 5.21, we
can measure the amount of water that flows
through the pipes. If we measure a cross sec-
tion of one of the pipes at any point, we can
figure out how much water passes through it in
a given amount of time—for example, we might
measure 1 gallon per second. People typically refer to this as the
water’s current—the more water that is flowing in a given amount of
time, the stronger the current.

symbol for DC
current (amperage)

Learn Electronics with Arduino160

PUMP

Current is the amount of
water passing a specific point
in a specific amount of time.

the amount of water flowing

Figure 5.21: Current in the water analogy

The word current means pretty much the same thing in a cir-
cuit. Current is the amount of electrical charge passing through the
circuit per second. Current is measured in amperes (a.k.a. amps),
which is why current is also called amperage. Current requires a
complete, closed loop in order to flow. If your circuit is not a com-
plete closed loop (say there is a broken wire in the circuit), then
there is zero current. Current in the electrical model is shown in
Figure 5.22.

Note Current is measured in amps, or amperes, which is the
amount of electricity flowing per second.

Electricity and Metering 161

Current is the amount of
electrical flow passing a
specific point in one second’s time.

our electrical model

Figure 5.22: Current in the electrical model

Current in the Circuit
The amount of current in your circuit is determined by two things:

The Resistance of Your Components in the Circuit

Components that require more current will typically have less resis-
tance. We’ll explain more about resistance later this chapter.

The Power Supply’s Current Rating

This rating indicates the maximum amount of current the power
supply can produce. You can check the rating for current (as well
as voltage) by looking at the output rating generally placed on the

Learn Electronics with Arduino162

bottom of the power supply with other information. Figure 5.23
shows the output rating on the bottom of a power supply. (We
recommended that you purchase a power supply that is rated
500 milliamps to 1 amp for current, 9–12V for voltage).

information about the electrical properties
of a power supply is typically located
on the bottom of the device

output of this supply is 1000 milliamps,
or 1 amp, and 9 volts DC

Figure 5.23: Output ratings on the bottom of a power supply

All components have a current rating shown on their case or
listed on their data sheet, which shows how much flow they can han-
dle. A component can’t force a power supply to push more current
than the power supply is rated for.

What’s the Current Limit for an Arduino?
The Arduino board has a current input limit of one amp. We rec-
ommended that you purchase a power supply that is rated from

Electricity and Metering 163

500 milliamps (1/2 amp) to 1000 milliamps (1 amp). The USB cord
connecting your Arduino to a computer will provide 500 milliamps
(1/2 amp), which is enough to run the Arduino board and provide
power to the pins. A power supply with a higher rating than one amp
could damage your Arduino.

The Arduino can only output 40 milliamps on each I/O pin. There
are other electronics components that can help your Arduino cover
higher current applications, but 40 milliamps is enough to power the
components we’ll cover in this book.

Note The maximum input current for the Arduino is one amp.
The I/O pins on your Arduino will only output a maximum of 40
milliamps.

Now, let’s look at how current can be measured with a multimeter.

Measuring Current
Measuring current is trickier than measuring voltage, and it’s done
much less frequently as part of the debugging process than mea-
suring voltage. So why are we showing you? It’s a useful exercise to
learn how current flows through your circuit, and to understand the
difference between voltage and current. The multimeter is your pri-
mary debugging tool, so we want you to know how to use it to check
many electrical properties.

To measure current, you have to pull out one of the leads of
a component in a circuit, as shown in Figure 5.24, to insert your
meter and make it part of the loop of the circuit. In your circuit,
you’ll pull out the anode of the LED. As always, when you are mak-
ing adjustments to your circuit, make sure it is not attached to
power.

Learn Electronics with Arduino164

anode of LED pulled out from row of tie points

anode of LED

Figure 5.24: Pull out the anode of the LED to prepare your board for measuring
current.

Adjusting the Multimeter
You need to move the dial of the multimeter to measure 200 milli
amps of DC amperage. Just like when you measure voltage, with
current measurement you want to pick a value greater than what
you expect the value to be—200 milliamps is the maximum safe cur-
rent value for your multimeter without moving the probes (more on
that later). Since you aren’t using any high-current components like
motors, you can feel confident that 200 milliamps will be more than
the current value. So, leave the multimeter’s probes plugged into the
same ports, as shown in Figure 5.25.

Now that you’ve set up your multimeter correctly and arranged
your circuit so that the anode of the LED is pulled out from the row
of tie points, you can plug the Arduino back into your USB cord. Next,
take the red probe of your meter and touch the lead of the resis-
tor that was in the same row of tie points as the anode of the LED
(before you pulled the anode out for this exercise), and touch the

dial is set to
200 milliamps DC

symbol for DC amperage
black probe in COM port red probe in mAVΩ port

Figure 5.25: Settings on the multimeter for measuring small amounts of current

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

measuring the current in a circuit with a multimeter

Figure 5.26: Probes touching one end of the resistor; the anode of LED pulled out
of the tie point

Electricity and Metering 165

black probe to the anode of the LED, as shown in Figures 5.26 and
5.27. The LED should light up because the multimeter is now a part
of the closed loop of your circuit. Since the multimeter is inserted in
the circuit, it displays the current (a.k.a. amperage). On our meter, it
read 14 milliamps. It might read something slightly different on your
meter, depending partially on the color of the LED.

anode of LED pulled out from row of tie points

anode of LED

Figure 5.24: Pull out the anode of the LED to prepare your board for measuring
current.

Adjusting the Multimeter
You need to move the dial of the multimeter to measure 200 milli
amps of DC amperage. Just like when you measure voltage, with
current measurement you want to pick a value greater than what
you expect the value to be—200 milliamps is the maximum safe cur-
rent value for your multimeter without moving the probes (more on
that later). Since you aren’t using any high-current components like
motors, you can feel confident that 200 milliamps will be more than
the current value. So, leave the multimeter’s probes plugged into the
same ports, as shown in Figure 5.25.

Now that you’ve set up your multimeter correctly and arranged
your circuit so that the anode of the LED is pulled out from the row
of tie points, you can plug the Arduino back into your USB cord. Next,
take the red probe of your meter and touch the lead of the resis-
tor that was in the same row of tie points as the anode of the LED
(before you pulled the anode out for this exercise), and touch the

dial is set to
200 milliamps DC

symbol for DC amperage
black probe in COM port red probe in mAVΩ port

Figure 5.25: Settings on the multimeter for measuring small amounts of current

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

measuring the current in a circuit with a multimeter

Figure 5.26: Probes touching one end of the resistor; the anode of LED pulled out
of the tie point

Learn Electronics with Arduino166

red probe touches
lead of resistor

black probe touches
anode of LED

Figure 5.27: Detail of probe placement measuring current

Warning Be careful when measuring high levels of amperage!

As long as you’re measuring relatively small amounts of current
like the 14 milliamps you measured in your circuit, it’s fine to have the
red probe plugged into the multimeter’s mAVΩ port (milliamps, volt-
age, and resistance measurements). However, if you’re working with
stronger currents (over 200 milliamps), you need to do two things to
avoid frying your multimeter:

▨▨ Set the multimeter’s dial to 10A.

▨▨ Move the red probe from the mAVΩ port to the 10A port.

If you forget to do these two things, the extra current can dam-
age your meter. We recommend that you don’t measure values of
current higher than 200 milliamps.

It is a good idea to keep the red probe in the mAVΩ port—that
is the correct port to use for measuring most of the electrical
properties.

Electricity and Metering 167

QUESTIONS?
Q: Can we control how much current flows through our circuits?

A: Yes, the amount of current is controlled by what components you
have attached within your circuit. Controlling the amount of current
is an important skill for safely using more power-intensive compo-
nents like motors.

Q: Are current and voltage related?

A: Yes, they are. You’ll see a formula later in this chapter that
explains their relationship.

Q: Why is there a separate port on the meter for high current?

A: The meter needs to use different internal electrical circuits to
measure voltage and high levels of current to protect the meter from
damage. Low levels of current (under 200 milliamps) won’t damage
the voltage-measuring circuit, but anything above that can cause
issues. Switching the port is the way you change which circuit is
active inside of your meter.

Q: Why does measuring current require that we remove the legs of
our components from the circuit?

A: In order to measure current, the multimeter needs to become a
component in the circuit. All of the current in your circuit then flows
through the meter so it can figure out the total amount. We’ll explain
the relationship between the meter and your components a bit later
in this chapter.

Resistance: Restricting
the Flow
Let’s look at how resistance might be demonstrated with the water
analogy in Figure 5.28. If the pipes are wider in our water system,
more water can flow through them. If the pipes are narrower, less

Learn Electronics with Arduino168

water can flow. You could say that the amount of resistance, or the
restriction of flow, is greater in the narrower pipes. Where there is
more resistance in the system with the narrower pipes, the turbine
would turn more slowly and do less work.

PUMP PUMP

wider pipes, less restriction narrower pipes, more restriction

turbine turns
quickly

turbine turns
slowly

pipes narrower

Figure 5.28: Resistance in the water model

Note In circuits, resistance refers to how much a material restricts
the flow of electricity.

In a circuit, resistors are equivalent to narrow pipes because they
restrict the flow of electrons. In the electrical system diagrams in
Figure 5.29, the image on the left has only one resistor and so the
light shines brightly. There are three resistors on the right image,
which causes more resistance value and makes the light shine less
brightly.

Resistance is measured in ohms, represented
by the omega symbol shown to the left. We’ll look
at how ohms are related to the other electrical
properties later in this chapter, but at the moment
just know that a resistor has a value that indicates
how well it opposes the flow of electricity.

Ohm symbol for resistance

Electricity and Metering 169

comparing resistance in electrical models

small amount
of resistance

large amount
of resistance

bright light dimmer light

Figure 5.29: Resistance in the electrical model

Resistors Up Close
As you’ve seen throughout the chapter, the voltage and current
within your circuits vary based on what components make up the
circuit. Electronic components can be very sensitive to spikes in elec-
tricity. Also, if you have a voltage source that is too powerful for a
component, it could damage the component. How can you protect
your electronic components within circuits? The answer is resistors.
Figure 5.30 shows a package of 220-ohm resistors. You’ve already
been using resistors to protect your LEDs from the 5V power coming
from the Arduino.

Learn Electronics with Arduino170

Figure 5.30: A package of resistors

If resistance is a property of all electronic components, why do
we need a special resistor component? Resistors are great because
they come in a wide range of different values and can help control
the flow of electricity in a circuit. You’ve already used circuits that
require 220-ohm resistors, but circuits throughout the book will
need resistors with different values. How will you be able to identify
how much resistance any given resistor has? There are a couple of
ways. Let’s look at measuring resistance with a multimeter.

Measuring Resistance with a Multimeter
You measure resistance in a resistor outside of a circuit. This is dif-
ferent from what you’ve seen when measuring voltage or current,
where you measured these values within a circuit. Now you’re going
to measure your 220-ohm resistor.

Electricity and Metering 171

On your multimeter, the black probe should be in the COM port,
and the red probe should be in the port marked mAVΩ.

Move the dial so it is in the section that measures resistance.
You’ll set the dial to 2KΩ for this example. The correct configuration
is shown in Figure 5.31.

symbol for resistance

set the multimeter dial to 2k ohms

Here is your port placement, which is the same
as with voltage and low current

Figure 5.31: Multimeter settings to measure resistance

You learned about setting the range when you were measuring
voltage. You need to set the range when you’re measuring resis-
tance as well. You know your resistor is 220 ohms, so you must set
the dial to a value that is greater than that—the 200 ohms set-
ting will be too low. Move the dial to 2kΩ; you’re looking for a value
between 200 ohms and 2000 (2k) ohms. Now that you’ve set the
dial and you know the probes are in the right place, you’re ready to
measure your resistor.

Touch one probe from the multimeter to each of the metal legs of
the resistor, as shown in Figure 5.32. When you’re measuring resis-
tance, it doesn’t matter what side each probe is on. You may have to
hold the resistor’s leads so that they have a solid contact point with
the probes, or you can set the resistor flat on a table. What value
does your multimeter display? The display should show something

Learn Electronics with Arduino172

close to .221, which is measured in kilo-ohms. Remember, since the
meter is set to measure 2k ohms, or 2000 ohms, .221k ohms is actu-
ally equal to 221 ohms.

2kΩ

probes touching
either end of
the resistor

display shows value

dial set to
measure

resistance

Figure 5.32: Measuring resistance with the multimeter

The value of the resistor will be shown on the meter display. Fig-
ure 5.33 shows what it looked like on our meter.

display shows resistor value

Figure 5.33: Multimeter display showing resistance value

Electricity and Metering 173

Why is the value slightly different from the 220 ohms the resistor
is rated at? It’s because resistors have a tolerance value, which tells
you the accuracy range of the resistor. The resistors you’ll deal with
in Arduino projects can have actual values that are plus or minus 10
percent different from the stated value. Generally speaking, you’re
working with components that aren’t sensitive enough to be both-
ered by these discrepancies, so you don’t need to worry about the
variation.

Resistors include a set of color bands to help you identify their
value and their accuracy. The appendix explains how to read these
color bands.

QUESTIONS?
Q: What do voltage, current, and resistance have to do with the
Arduino?

A: When you are working with the Arduino, you are building circuits
that use electricity. If you understand how voltage, current, and
resistance work, it will help you debug your circuits and eventually
build more complex projects.

Voltage, Current,
Resistance: Review
Let’s look at our water analogy diagram one last time (Figure 5.34),
then quickly review the properties you’ve just learned about, what
unit each is measured in, and the symbol used to represent it.

Learn Electronics with Arduino174

PUMP

flow of water
represented by arrows

upper tank

lower tank

turbine

resistor

light bulb

voltage
source,

the battery

flow of current
represented by arrows

Figure 5.34: Water analogy for electricity

Table 5.1 reviews the electrical properties with their symbols and
the units that they are measured in.

Table 5.1: Electrical properties

NAME DESCRIPTION UNIT SYMBOL

Voltage Electromotive force, or the
potential flow

Volt V

Current Amount of electrical flow Ampere, or amp A

Resistance Restriction of electrical flow Ohm Ω

How Does Electricity Affect Our
Components?
In a circuit, current, voltage, and resistance are related. If you have
current in a system, then there is necessarily a voltage and a resis-
tance. Let’s examine what happens when you reduce only one of
these properties.

Electricity and Metering 175

Voltage

Remember that voltage represents the potential
for electricity to move within a circuit. Voltage will
always flow from the highest to lowest charge
until it reaches the equilibrium zero state, also
known as ground. If we place the same LED and
resistor in our circuit, and power it using only 3.3 volts instead of
the 5 volts we have been accustomed to, then our LED will be less
bright. If we continue to reduce the voltage, our LED will continue to
dim until it finally turns off.

Current

Current is the property related to the flow of
electrons in the circuit. Current is what drives
our components. What happens if we don’t
have enough current within our circuit? With-
out enough current there are not enough
electrons to turn our components on. When you have a flashlight
with dead batteries, the batteries have too little current to turn the
light on. If we reduce the current to our circuit by adding resistors,
the LED will turn off suddenly once the minimum current needed to
turn the LED on disappears.

Resistance

Resistance is a measure of how a material
restricts the flow of electricity. All materials nat-
urally have some resistance, but if the resistance
is too high the electrical flow will be stopped alto-
gether. However, if there is too little resistance our
components can be overwhelmed by the amount
of current and fry. We often use resistors to restrict the flow in order
to preserve the other components of our circuits. If we add more
resistors or change the value of the resistors in the basic circuit with
the LED, we will increase resistance value and decrease the amount

symbol for DC voltage

symbol for DC amperage (current)

Ohm symbol for resistance

Learn Electronics with Arduino176

of electricity that reaches our LED, perhaps even limiting our LED’s
ability to produce any light.

How Are Our Components Affected by a
Change in Electrical Properties?
Let’s take a quick look at how our components are affected by
changes in electrical properties in Table 5.2.

Table 5.2: Effects of changes in electrical properties on components

PART IMAGE VOLTAGE CURRENT RESISTANCE

LED The LED will get
dimmer as the
voltage gets
lower, or brighter
as more voltage
is added; if there
is too much volt-
age the LED will
burn out.

LEDs need only
a very small
amount of cur-
rent to run. How-
ever, reducing the
amount of cur-
rent too much will
turn off the LED.

LEDs have a
tiny amount of
resistance.

Resistor Voltage is con-
verted into heat
when it crosses
over a resistor.
More voltage
means more heat
and less voltage
means less heat.

Resistors lower
the amount of
current being
drawn in a circuit.

The amount
of resistance
depends on the
resistor’s rated
value. Check the
appendix to learn
how to identify
resistor values by
color.

Battery + - Batteries estab-
lish the voltage
level for both the
high point and
zero volts, a.k.a.
the ground.

Current comes
from the battery.
The current flow-
ing will change
depending on
what com-
ponents are
attached to the
battery and how
much current
they require.

Since a battery
is not a perfect
conductor, there
is a small amount
of resistance
inside of the bat-
tery, but when it
is in our circuits it
is effectively zero.

Electricity and Metering 177

Now let’s take a look at how voltage, current, and resistance
interact with each other in a rule called Ohm’s law.

How Do Voltage, Current,
and Resistance Interact?
Ohm’s Law
Voltage, current, and resistance are related through a formula
known as Ohm’s law. Ohm’s law, shown in Figure 5.35, states that in
a given circuit, the voltage (in volts) is equal to the current (in amps)
times the resistance (in ohms).

voltage in volts current in amps resistance in ohms

Figure 5.35: Ohm’s law

This equation shows us that, no matter how much pressure (volt-
age) there is, if the resistance is high the current will be restricted.
This is true for all electrical wiring.

One benefit of Ohm’s law is that if we know two of the electrical
properties, we can always calculate the value of the third property.
You can see these relationships in Figure 5.36.

Learn Electronics with Arduino178

If we know two properties, we can calculate the value of the third

Figure 5.36: Permutations of Ohm’s law

Since you have already learned how to measure the values of
voltage and current in your circuits, you can calculate the voltage,
current, or resistance, as long as you know the value for two out of
the three properties.

Ohm’s Law in a Circuit
Now you know about Ohm’s law, but how will it help you make
your circuits? You can use Ohm’s law to determine the value of the
resistors you need in your circuits. You can also use Ohm’s law as
a safety check to confirm that the values of voltage and current
running through are components are below the limits for those
components.

For example, if you have a resistor in your circuit that has 220
ohms of resistance, and there is 20 mA (which is the same as 0.020
amps) running through the circuit, then you can use Ohm’s law to
figure out how much voltage will pass through the resistor. Fig-
ure 5.37 shows the calculations.

V = IR
V = (0.020 amps) * 220 ohms
V = 4.4 Volts

Figure 5.37: Using Ohm’s law

Electricity and Metering 179

Ohm’s Law Applied
How else can you use Ohm’s law? Let’s say you want to build two
circuits that each contain one LED and one resistor. You’re going to
power one circuit with a 3.3-volt pin on the Arduino, and another
with the 5-volt pin (recall that the Arduino can provide either volt-
age). The LEDs we’re going to use in the circuits take 2.2 volts to
light up fully, and use 25 milliamps, or 0.025 amps. Because of the
voltage difference between the two circuits, you will need different
resistors in each circuit to protect the LEDs. What resistor value will
you need for each circuit?

Since you know that 2.2 volts are going to pass through the LED
in each circuit, you can take the difference between your provided
voltages (3.3 volts and 5 volts) and 2.2 volts to figure out how much
voltage will pass through each resistor (Figure 5.38).

3.3 volts - 2.2 Volts = 1.1 Volts 5 volts - 2.2 Volts = 2.8 Volts
circuit one calculation circuit two calculation

Figure 5.38: Determining voltage

Now you can use Ohm’s law to calculate how much resistance
you need to have the stated voltage and a current of 0.025 amps
pass through the resistor protecting your LED (Figure 5.39).

1.1V = 0.025A * R
1.1V/ 0.025A = R
44 ohms = R
44 ohm resistor

2.8V = 0.025A * R
2.8V/ 0.025A = R
112 ohms = R
112 ohm resistor

circuit one calculation circuit two calculation

circuit powered
from 3.3

volt source

circuit powered
from 5 volt
source

Figure 5.39: Calculating with Ohm’s law

Learn Electronics with Arduino180

The 5-volt circuit requires a higher value resistor than the 3.3-
volt circuit. You can see that using Ohm’s law shows you how the
value of the resistor required changes in your circuit based on the
voltage provided. Ohm’s law is useful for making sure your compo-
nents are provided with the right amount of electricity.

Arranging Components in a Circuit
How do you know how to arrange the components in your circuit?
You know that the circuit must form a complete loop. Some compo-
nents seem to be arranged next to each other with common elec-
trical points, whereas others are connected end to end. What are
these arrangements, and what effect do they have on the electrical
properties in the circuit?

Components in Parallel
and Series
Let’s look at the order of arrangement of components in a circuit.
We’ll look at parallel first.

Order of Components in a Circuit:
Parallel
Components in parallel are placed next to each other and share elec-
tric contact points, as shown in Figure 5.40. The electricity flows along
each path through the components that are arranged in parallel.

Order of Components in a Circuit: Series
In contrast, components in series follow one after another, as
shown in Figure 5.41. The circuits you have built so far have all been
arranged in series—all of the electricity that flowed through the
resistor then went into the LED.

Electricity and Metering 181

schematic of resistors
arranged in parallelresistors arranged in parallel

components share
common electrical

contact points

Figure 5.40: Resistors arranged in parallel

schematic of resistors
arranged in seriesresistors arranged in series

components are
arranged one
after another

Figure 5.41: Resistors arranged in series

To see exactly what we mean by components in series and par-
allel, we’ll show you how to add another LED to your basic circuit,
first in parallel, then in series. Then you’ll measure the voltage drop
across each of the LEDs.

Learn Electronics with Arduino182

A Circuit with Two LEDs in Parallel
You’ll add this LED so it is in parallel with the first LED, as shown in
Figure 5.42. Arranging components in parallel means that the com-
ponents are connected with common electrical points. You can think
of the components as being next to each other. Let’s look at the sche-
matic for a circuit with the LEDs arranged in parallel. You can see that
the resistor is attached to 5 volts and also to both of the LEDs.

5V
GND

schematic for circuit
with LEDs in parallel

LEDs in parallel

 detail schematic

Figure 5.42: Schematic for circuit with LEDs in parallel

Add a Second LED to the Circuit

To create this circuit, add a second LED to the breadboard so that
the anodes of both LEDs are in one row of connected tie points and
the cathodes are in a different single row of connected tie points.
Both of the anodes are now connected to one end of the resistor,
and both of the cathodes are connected by a jumper to ground,
as shown in Figure 5.43. Remember to disconnect your computer
before you make any changes to the circuit.

You’ve added the second LED, so you’re almost ready to check
the voltage in this circuit.

Electricity and Metering 183

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

one end of resistor and
anodes of both LEDs in
same row of tie points

the circuit with 2 LEDs in parallel

detail of the 2 LEDs
arranged in parallel

cathodes of both
LEDs and jumper
to ground in same
row of tie points

Figure 5.43: Adding the second LED in parallel

Measuring Voltage across LEDs in
Parallel
When you have the LED placed correctly in the breadboard, attach
your computer again to the Arduino. Next, set the dial on your mul-
timeter to measure 20 volts. Then place the red probe on the anode
of one of the LEDs, and the black probe on the cathode of the same
LED, as shown in Figures 5.44 and 5.45.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

1.78

Figure 5.44: Measuring voltage of a component in parallel

Learn Electronics with Arduino184

detail measuring voltage of LED 1 detail measuring voltage of LED 2
Figure 5.45: Measuring the voltage of LED 1 and 2

The display on your meter should read about 1.78 volts for red
LEDs (if it is not exactly the same, that’s because the LEDs you’re
using are rated differently than the ones you used to build the cir-
cuit). After you’ve tested the voltage across one of the LEDs, check
the other, as shown in Figure 5.45. The value should be the exact
same voltage drop for both LEDs if you used identical LEDs. You
don’t need to measure the voltage across the resistor, because it will
be the same value as you had with your basic circuit.

Note In parallel, both LEDs receive the same voltage.

The Multimeter in Parallel
You may have noticed that the LEDs share common electrical contact
points, and so does the multimeter. When you’re using the multimeter
to measure voltage, the multimeter is in a parallel arrangement with
the component whose voltage you are measuring (Figure 5.46).

Note Measuring voltage in a circuit places the multimeter in par-
allel with the component being measured.

Electricity and Metering 185

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

1.78

Figure 5.46: The multimeter is in parallel with the LEDs.

Components in Parallel: What Effect
Does That Have on the Voltage?
You know that components in parallel share the same electrical con-
tact points. Electricity will take all possible paths from the beginning
of a circuit to its end. As you saw with our voltage measurement,
the same voltage will pass through all the components in parallel
(Figure 5.47).

Even with a ton of LEDs, the voltage is
the same for all the LEDs in parallel

The voltage is
the same across

all of these LEDs

Figure 5.47: Many LEDs in parallel

Learn Electronics with Arduino186

If you want several LEDs to glow the same brightness, you can
place the LEDs in parallel and know that they will all receive the
same voltage, unchanged by the number of LEDs in place. You
aren’t able to light more than a few LEDs in parallel from your Ardu-
ino, however, since you’re limited by the amount of current provided.

Note Equal voltage will pass through all components that are in
parallel.

Building a Two-LED Series Circuit
Now we’re going to adjust our circuit, placing the LEDs so they are
in an arrangement called series. Components that are in series are
placed one right after each other. It is easy to see this by looking at
Figure 5.48, where two LEDs are shown one right after the other;
in fact, the resistor is also in series in this arrangement. Most cir-
cuits will be a combination of components arranged in series and in
parallel.

5V
GND

schematic for circuit with LEDs in series

detail schematic with LEDs
and resistor in series

Figure 5.48: Schematic for the circuit with LEDs in series

Electricity and Metering 187

Start by unplugging your Arduino from your computer. To place
the second LED in series with the first, place the anode (long leg) of
the second LED in the same row of tie points as the cathode (short
leg) of the first LED. Place the cathode of the second LED in a sep-
arate row of tie points. You will have to move the jumper that goes
to ground so it is in the same row of tie points as the cathode of the
second LED, as shown in Figure 5.49. (Remember, the circuit has to
be a complete loop in order to work.)

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

circuit with LEDs in series

detail of the circuit
with LEDs in series

anode of second LED
in same row of tie points
as cathode of first LED

cathode of second
LED in same row of
tie points as jumper
to ground

Figure 5.49: Placing the second LED in series

When you have adjusted your circuit, you will be ready to
meter it.

Metering the Voltage of Components
in Series
Metering components that are in series for voltage is much the
same as metering components that are arranged in parallel. Plug
your Arduino into your computer and the LEDs should both light
up. With the dial again on 20V, place the red probe on the anode
of one of the LEDs and the black probe on the cathode of the same
LED, as shown in Figure 5.50. The voltage should read something

Learn Electronics with Arduino188

like 1.77 volts. Next, measure the voltage across the other LED; your
result should be similar to what you got for the first LED. Finally,
measure the voltage across the resistor (for us, the value was 1.38
volts). Figure 5.51 shows a detail of metering the components in
the circuit.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

1.77

Figure 5.50: Measuring the voltage of the components in series

measuring voltage across resistor measuring voltage across LED 1 measuring voltage across LED 2

Figure 5.51: Details of metering the circuit

Electricity and Metering 189

QUESTIONS?
Q: Why are the values for voltage in both the series circuit and the
parallel circuit so similar?

A: In this case, we are not seeing as big a difference in voltage for
series and parallel as we might in a different circuit. We felt that it
was important to show you the differences in the way these compo-
nents are arranged and how electricity flows in these circuits, and
help you become more familiar with using the meter.

Components in Series: What Effect Does
That Have on the Voltage?
In your circuit, the electricity must pass through the resistor before
it gets to the first LED. As you saw in our multimeter measure-
ments, voltage is consumed as it passes through each component.
Although the voltage across each LED is about the same as for
your one LED in your basic circuit, the value of the voltage across
the resistor drops. The resistor consumes less voltage in this series
example because two LEDs in the circuit are consuming voltage.
Note that the value of the resistor does not change, but since each
LED now requires its own voltage, the resistor consumes a smaller
portion of the total voltage. Figure 5.52 represents the voltage drop
in the circuit. The values of voltage are each adjusted according to
Ohm’s law and can be measured with a multimeter.

You’ll often have to wire resistors in series with other compo-
nents, like LEDs, in order to drop the value of the voltage that enters
your component.

Learn Electronics with Arduino190

the resistor consumes
the first part of the voltage.
In our case, it used 1.38 volts

some of the voltage left over
is consumed by the first LED,
1.77 volts from our measurement

the remaining voltage is consumed
by the second LED, a further
1.78 volts by our measurment.

Figure 5.52: Visualizing voltage drop across the circuit with LEDs in series

It’s less likely that you’ll put multiple LEDs in series since each
additional LED makes all your lights dimmer. Old strings of holi-
day lights, such as those in Figure 5.53, are a real-world example
of lights designed to be wired in series. Being wired in series is the
reason that if one bulb burns out the whole string of lights turns
off. More recent string lights have been redesigned to avoid this
problem.

strings of christmas lights are often in series

Figure 5.53: Christmas lights, arranged in series

Electricity and Metering 191

The Multimeter in Series
Remember how you pulled out the anode of the LED when you were
measuring current in your basic circuit? Then you inserted the mul-
timeter right into the circuit, touching one end of the resistor and the
anode of the LED to complete your circuit. In that arrangement, the
multimeter was in series with the resistor and the LED. The multime-
ter has to be in series to measure the current, because then it does
not alter the value of the current (Figure 5.54).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+
RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L
GND

Figure 5.54: The multimeter is in series with the other components when measur-
ing current.

Table 5.3 shows the effects of electrical properties on compo-
nents in both series and parallel.

Learn Electronics with Arduino192

Table 5.3: Effects of electrical properties on components in series and parallel

EFFECT ON ELECTRI-
CAL PROPERTIES

COMPONENTS IN
SERIES

COMPONENTS IN
PARALLEL

Effect on voltage Each component con-
sumes part of the
voltage.

Equal voltage will cross
all parallel components.

Effect on current Equal current crosses
all series components.

The current gets split
based on the resis-
tance value of each
component.

Effect on resistance Total resistance equals
all values of resistance
added together.

Resistance is reduced
when components are
in parallel.

Summary
You’ve learned about voltage, current, and resistance and how they
interact, through Ohm’s law, and you know how to measure those
properties with your multimeter. You’ve also learned about setting
up components in series and in parallel. In the next chapter you’ll
return to Arduino projects and get additional programming practice.

In this chapter, you’re going to learn how to make your
projects interactive, first by adding a button to turn

an LED on and off. Then, you’ll attach a speaker to your
Arduino and control both sound and light with your
sketch. Finally, you’ll add two more buttons, in the pro-
cess of building a keyboard instrument on which you can
play simple tunes. Throughout these projects, you’ll learn
more about programming the Arduino. To complete the
projects in this chapter, you need to have the Arduino
IDE installed, know how to connect a breadboard to
your Arduino, and be familiar with writing a sketch and
uploading it to your Arduino.

Switches, LEDs,
and More 6

Learn Electronics with Arduino194

Interactivity!
In Chapter 4, “Programming the Arduino,” you saw how to connect
the Arduino to a breadboard to build a circuit that lit up an LED in
an SOS pattern. The LED turned on and off, over and over and over
again, always in the same pattern. Wouldn’t it be great if you could
build a circuit that would respond to the user’s action?

You’ll do just that in this chapter by building a mini-keyboard
instrument with three buttons, a speaker, and an LED. The speaker
will play a different tone, depending on which button you push, so
you can play a tune. And the LED will turn on whenever you push
any of the buttons. We’ll start with a circuit with an LED and a but-
ton and build on that. Figure 6.1 is a preview of what the finished
circuit will look like.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

Figure 6.1: Three-tone button keyboard

Switches, LEDs, and More 195

Just as in Chapter 4, our project will consist of an Arduino and
breadboard circuit with code written in the Arduino IDE. We’ll go
over building the circuit and all of the
code in the sketch step by step. In this
chapter, you will also learn a bit more
about reading schematics.

This project uses digital inputs and
outputs. You used a digital output, an
LED, in the last chapter. Before we start
to build, let’s look more closely at what we mean by
digital input and output.

Digital Inputs and Outputs
Overview
Think about your computer: how do you get information into it? You
may use a mouse, and you probably use a keyboard. Keyboards and
mice are both examples of inputs (Figure 6.2). You can attach many
different types of inputs to your Arduino. In this chapter you will
attach buttons to the Arduino as inputs.

inputs

mouse

keyboard

button
Figure 6.2: Common inputs

Learn Electronics with Arduino196

What do we mean by output? Again, think about your computer.
You might have speakers attached to it, or a monitor or printer.
Those are all examples of output devices (Figure 6.3). An Arduino
can have many different types of outputs attached to it. In fact, you
have already used an output device with the Arduino: the LED you
connected to it in the last chapter.

outputs

LED
speaker motor

Figure 6.3: Common outputs

For now, think of digital inputs and outputs as components that
have only two possible states: on or off. Inputs send messages to
the computer. Outputs receive messages from the computer. We
will explain this in more detail later in the chapter.

Before you start building your circuit, let’s look at the schematics
for a button or switches. Doing so will help you understand how dig-
ital input works.

Switches
There are a million different ways to trigger electronic devices or
turn something on. Switches and similar on/off devices activate

Switches, LEDs, and More 197

televisions, music equipment, lights—even your kitchen appliances!
How does a switch work?

All switches work on the same basic principle: it either “closes
the circuit” and turns something on, or “opens the circuit” and
turns something off. When the switch is closed, electricity can flow
through; it cannot flow through when the switch is open. Figure 6.4
illustrates how this works.

a closed switch: electricity CAN
flow through the circuit

an open switch: electricity CANNOT
flow through the circuit

Figure 6.4: Switch diagrams

Like all digital inputs, as you saw earlier, switches have only two
possible states: on and off. In the Arduino IDE, on and off (respec-
tively) are equivalent to HIGH and LOW. (Remember how, in the SOS
circuit in Chapter 4, the light turned on when you set it to HIGH and
off when you set it to LOW.) Each key on a keyboard is actually a
switch, set in the off position until pressed down, when it goes to on.

Buttons are one type of switch. For our circuit, we will use a
momentary pushbutton switch, which closes and completes the cir-
cuit when you press it. As soon as you let go, the switch opens again
and the circuit is no longer complete.

Digital Input: Add a Button
Let’s get our parts together to start building a circuit with a button.

You’ll need the following:

▨▨ 1 LED

▨▨ 1 220-ohm resistor (red, red, brown, gold)

Learn Electronics with Arduino198

▨▨ 1 10 kΩ resistor (brown, black, orange, gold)

▨▨ 1 momentary pushbutton switch

▨▨ Jumper wires

▨▨ Breadboard

▨▨ Arduino Uno

▨▨ USB A-B cable

▨▨ Computer with Arduino IDE

Figure 6.5 shows a preview of what the circuit will look like when
it’s built, as well as the schematic. Since the schematic is a bit differ-
ent from those we have seen before (it includes some new symbols),
we will take a closer look at it.

5V
GND

13

2

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND
Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

the completed circuit plugged in schematic for the button circuit

Remember, this part of the schematic
represents the Arduino

220 Ohm resistor

switch schematic
symbol

10K Ohm resistor

LED

Figure 6.5: LED button circuit

Understanding More Complex Schematics
The schematic for this circuit follows a couple of conventions that
you haven’t seen before.

Switches, LEDs, and More 199

At the bottom of this schematic is a small circle indicating that
the cathode of the LED (remember: the cathode is the LED’s short
lead or negative side) on Pin 13 is connected to the same ground as
the resistor that is attached to one end of the switch. A filled circle is
often used in schematics to indicate connection points.

As schematics become more complex, you sometimes have to
run lines that are not connected over each other. To indicate that
these lines are not connected, we’ll draw a little loop like the one on
the right side of Figure 6.6.

5V
GND

13

2

schematic for the button circuit

220 Ohm resistor

LED

switch schematic
symbol

loop indicates
that these these
lines are NOT
connected.

detail lines NOT connected

10K Ohm resistor

filled-in circle indicates
connection point

Figure 6.6: Schematic diagram

Learn Electronics with Arduino200

Building the Button Circuit
Before you add the button to the circuit, you have to rebuild the cir-
cuit you used with the LEA4_Blink sketch in Chapter 4, shown again
in Figure 6.7. Here’s a quick overview of how to do that. Follow along
and check each step as you go:

	 1.	Attach the power and ground from the Arduino to the power and
ground buses on the breadboard.

	2.	Connect a jumper from Pin 13 on the Arduino to a row of tie
points on the breadboard.

	3.	Connect a 220-ohm resistor to the same row of tie points as Pin 13.

	4.	Connect the anode (long leg) of the LED to the other end of resis-
tor, and jump the cathode (short leg) of the LED to the ground bus.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

start from here- same as the basic circuit in chapter 4

power and ground buses attached to Arduino

pin 13 attached to breadboard

power and
ground on Arduino
attached to power
and ground buses

on breadboard

220 Ohm
resistor connected
to pin 13

anode of LED
attached to
resistor

cathode of
LED jumped
to ground

Figure 6.7: Reviewing the basic circuit from Chapter 4

Now that you have the basic circuit assembled, you’ll add a but-
ton. You’ve looked at the schematic for a button, but before you
put the button in the breadboard, let’s look at how the button is
constructed.

Switches, LEDs, and More 201

Adding the Button
The button you’re going to add is a pushbutton switch (a.k.a. a
momentary switch). While you are pressing the button, the LED will
turn on, and as soon as you lift your finger, the LED will turn off (Fig-
ure 6.8). This type of button gets its name from just being toggled
for the moment.

our button

Pressing the button closes the circuit

this button actually contains two separate
switches next to each other, as you can see
in the x-ray view of the button’s innards

button pinsbutton pins

Figure 6.8: Button diagrams

When the button is pressed, the circuit is closed, and electricity
can flow through it, like the diagram you saw earlier in this chapter.

Learn Electronics with Arduino202

This button actually contains two separate switches (that’s why it
has four pins sticking out of it). Both close when you press the button
down. Your circuit will use only one side of the button.

Remember the trench that runs down the middle of the bread-
board? (You learned about it in Chapter 3, “Meet the Circuit.”)
Your button is going to be placed across the trench, with two pins
inserted into the row of tie points on each side. The button will only
fit across the trench in one orientation. Placing your button across
the trench ensures that it is oriented correctly, with each pin con-
nected to a separate and discrete row of tie points (Figure 6.9). As
long as the button fits across the trench, the button direction will not
matter.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+
RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L
GND

adding the button
trench

trench

pushbutton switch added
to breadboard across trench

each pin is in a separate
row of tie points

detail of button across trench

Figure 6.9: Adding the button to your breadboard

Tip You are placing the button near the end of the board to make it
easier to add all your components.

Switches, LEDs, and More 203

Connecting the Button to Power, a
Resistor, and Ground
Let’s continue wiring the button. Add a red jumper that connects the
power bus (the one with the “+” sign) on the breadboard to the top-
left side of the button (Figure 6.10).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

jumping pin of button to power bus
 detail of red jumper connecting pin to power bus

the jumper is in the
same row as the button

Figure 6.10: Adding the first jumper wire

Next, attach a 10 kΩ resistor (colored brown, black, orange, gold).
Attach one of the resistor’s leads to the button, and the other lead
to the ground bus (the one with the “–” sign), as shown in Figure 6.11.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

attaching resistor to other end of button and to ground bus detail of 10K ohm resistor attached
to button and to ground bus

the resistor attaches
the button to the

ground bus

Figure 6.11: Adding the resistor for the button

Learn Electronics with Arduino204

Attach the Button to an Arduino Pin and
Upload a Sketch
Finally, you’ll attach a jumper to Pin 2 on the Arduino. This jumper
will be attached to the 10 kΩ resistor that is attached to the ground
bus. As you can see in Figure 6.12, the resistor, the jumper to the pin,
and one of the pins of the button should all be in the same row of tie
points. The jumper wire also needs to be in between the resistor and
the button.

 4

 2
 1
0

 ~3

TX

RX

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

detail of jumper connecting pin 2
to button and to 10 K ohm resistor

attach pin 2 to resistor and button

Figure 6.12: Adding the jumper to the digital pin

The button is all hooked up. Now that the Arduino is attached to
the breadboard and the button is wired up, hook up the Arduino
to your computer so you can upload a sketch that will control the
behavior of the button and the LED.

Open, Save, Verify, and Upload
Attach your computer to the Arduino with the USB cable so you can
upload the Button sketch. This is one of the example sketches that
comes with the Arduino IDE.

	 1.	Launch the Arduino IDE, and then open the Button sketch by
choosing File > Examples > 0.2 Digital > Button.

	2.	Save the button sketch as LEA6_Button.

	3.	Click the Verify button first to make sure your code is okay.

Switches, LEDs, and More 205

	4.	Click the Upload button to upload your code to the Arduino. This
is all shown in Figure 6.13.

connect Arduino to computer
and launch Arduino IDE

open Button sketch in
Arduino IDE

save Button as
LEA6_Button

click verify
button to
check code

click upload
button to
upload sketch
to Arduino

Figure 6.13: Procedure for getting code onto the Arduino

Turn the LED On and Off
Now when you press the button, the LED will light up, as you can see
in Figure 6.14.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

Figure 6.14: Press the button and the LED lights up.

Learn Electronics with Arduino206

QUESTIONS?
Q: Can I use other types of switches or buttons that I find?

A: Yes! All switches and buttons work on the principle of either clos-
ing the circuit (making a complete loop) or opening the circuit (break-
ing the loop).

Q: Can I use a single button to trigger more than one output? For
example, could I use one button to trigger a whole string of lights?

A: Although one button can be programmed to trigger many dif-
ferent things at the same time, most electronics have one button
per function because that setup makes it easier for the user to
understand exactly what is being triggered. If the same button
triggers many functions, the user can be confused as to how the
interaction works.

You’ve built the circuit and looked at the schematic. Now let’s
examine the code for LEA6_Button in detail.

Looking at the Sketch:
Variables
Here’s the code for the LEA6_Button sketch. We’ll step through the
details over the next few pages. We’ve removed the code’s starting
comments for the sake of brevity.

// constants won't change. They're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status

initialization section:
some values
declared here

Switches, LEDs, and More 207

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

setup function

void loop() {
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);

 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

loop function

Remember, anything
after // is a comment
and won’t affect the code

Initializing Our Code and Variables
LEA6_Button is different from our LEA4_Blink sketch in that there
is code that happens before the setup() function. This initial code
is aptly called initialization code—code at the very top of a sketch
where you declare values that you want to have access to through-
out your sketch. Let’s take a look at this sketch’s three lines of initial-
ization code:

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

int buttonState = 0; // variable for reading the pushbutton status

All three lines of codes look similar; they all have some words on
the left and numbers on the right with an equals sign in the middle.

Learn Electronics with Arduino208

But what do they do? To help you understand this section of code,
we’ll introduce a new programming concept: variables.

What Is a Variable?
In the simplest terms, a variable is a place to store a specific value
and give it a useful name. Think of a variable as a container that
holds a value. If you’ve taken algebra, you’re familiar with variables.
Remember equations where you were told things like “if x = 1”?

Variables can hold different types of values. For now we will look
at variables that hold integers.

In the following code line, we are both declaring and assigning a
variable. Declaring a variable means to give it a name, and assign-
ing the variable gives it a value. You can declare variables without
giving them a value, but you can’t give a value to something you
have not yet declared.

int buttonState = 0;

Declaring Variables
A line of code that defines a variable is called a variable declaration.
Often Arduino code will also include a variable assignment. Variable
declarations and assignments are not structured the same in all
programming languages—we are looking only at how variables are
declared in the Arduino programming language.

In the Arduino language, all variable declarations and assign-
ments have at least four different parts: the type of data the vari-
able contains, the variable’s name, an equals sign, and the actual
value you wish to set for the variable. (Variables can have more than
four parts; you’ll learn about a fifth part momentarily.)

Switches, LEDs, and More 209

int buttonState = 0; semicolon indicates
the end of each
line of code.

value

type name
equals sign

In this example, you are putting the value 0 into a variable with
the name buttonState that has a type of int, which stands for inte-
ger. Let’s look at all the parts of that declaration in detail. We’ll start
with the name, and then look at the value.

Variable Name

The name part of the declaration determines how you refer to your
variable through the rest of your sketch. There are a few rules for
selecting names: a variable name can’t start with a number, can’t
have any spaces in it, and can’t be a word that the Arduino lan-
guage already uses for another purpose (for example, we can’t
name a variable “delay,” since that term is already reserved by the
Arduino language). There should be only one variable with a par-
ticular name for each sketch. It is considered best practice to name
your variables something that indicates their purpose.

int buttonState = 0;

Note Variable names can’t start with a number, include spaces or
symbols, or be a word used by the Arduino language.

Variable Value

The value part of the declaration is what is stored in the variable.
In this example you have an integer value of 0, which corresponds

Learn Electronics with Arduino210

to the state, or voltage value, of our pin. Values are set using one =
(equals sign), which says that anywhere you see this variable’s name
(buttonState), it means “Use the value 0” or “You are assigning the
value 0 to this variable.”

int buttonState = 0;

value put in
variable

equals sign assigns
value to variable

Variable Type

type sets what type of information you can save within your variable.
In the declaration we’re examining, int stands for integer, which
means you can save only values that are whole numbers. Not all
languages have typed variables, but in the Arduino language, you
must declare the type of each variable in your sketch. Other types
include float, string, character, and Boolean; you can learn more
about variables types at arduino.cc/en/Reference/VariableDeclaration.

int buttonState = 0;

what type of
value we can
put in variable

http://arduino.cc/en/Reference/VariableDeclaration

Switches, LEDs, and More 211

Now that you know about the four parts required in variable dec-
laration, let’s examine one optional part that’s used in a couple of
variable declarations in our sketch: the qualifier.

Variable Qualifiers

Some variables also have a qualifier, which determines whether you
can change the value of the variable after you create it. The qual-
ifier const sets your variable to have a permanent value when you
run the sketch. In this context, const stands for constant. Here’s an
example from our sketch:

const int ledPin = 13;

qualifier

It may seem a little strange to think of a constant variable, but
remember that setting a variable just means to keep track of a value
with a name. When you plug the wires into the pins of your Ardu-
ino, the pin numbers are not going to change. Since the value of the
variable isn’t going to change, you add const to your declaration,
which makes it clear that this is a constant variable.

Note The qualifier is optional for variables; most variable declara-
tions only have a type, a name, and a value.

As you can see from the following initialization code, our sketch
contains two constant variables and one variable that can change:

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

int buttonState = 0; // variable for reading the pushbutton status

Learn Electronics with Arduino212

QUESTIONS?
Q: What happens if I name my variable something that is not
allowed?

A: The error console in the Arduino IDE will give you an “unexpected
unqualified id” warning, which will be displayed in orange text. The
easiest fix is to change your variable name to something different.

Q: Do I need to use const for all my variables?

A: No, it depends on what the variable is for. For example, in the
LEA6_Button sketch, the pin variables will never change during the
sketch, but the variable for buttonState will. We want to be able to
change the value of the buttonState variable, so we will leave const
off its declaration.

setup() for LEA6_Button
Now that we’ve looked at the LEA6_Button sketch’s initialization
code, let’s move on to its setup() function:

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

set to output

set to input

These are variables whose values
we set in the initialization code

The setup() function for the LEA6_Button sketch has only two
lines of code. Similar to the code in Chapter 4, you’re setting a pin
to be an output using the pinMode() function. This time, however,
you’re using the variable ledPin to stand in for the number 13. You’re
also using pinMode() to set a different pin with value buttonPin as an
input. These are two of the three variables that you created in the
sketch’s initialization code. Naming your variables gives you a way to

Switches, LEDs, and More 213

refer to numbers you need in your sketch in a meaningful way and
makes your code easier to read.

Let’s take a closer look at what we mean by digital input.

Digital Input Refresher
Let’s say that you’re arriving at a friend’s house when your friend
calls and asks you to look through the window at a light. Your friend
then asks, “Is the light on?” Your job is to tell the friend, “Yes, the light
is on” or “No, the light is off.” That’s exactly what a digital input does:
it reports whether the light is on or off (Figure 6.15).

in digital inputs and outputs,
there are only 2 possible states

Figure 6.15: Digital input states

Learn Electronics with Arduino214

In digital inputs, there are only two possible states: HIGH and LOW,
which you can think of as on (HIGH) or off (LOW). Digital inputs mea-
sure whether something is on (in a HIGH state) or off (in a LOW state).
HIGH/on is also equal to 1 and LOW/off is equal to 0. We can use the
digital pins on the Arduino to check on buttons and switches to see
whether or not they have been triggered or pressed.

Why Three Different Ways to Say the
Same Thing?
If HIGH, 1, and on are all equivalent (as are LOW, 0, and off), why are
there multiple ways to say the same thing? This can be confusing.

Each value talks about a different aspect of our Arduino project:

▨▨ On and off refer to what we see happening in the world. For
example, is the LED lit or not? We don’t use the terms on and off
in our code for the Arduino—only in our general discussions.

▨▨ 1 and 0 are integer variable values that represent on and off,
respectively. We use 1 or 0 when we are initializing variables in
our code. You saw an example of this in our sketch’s initialization
code, which includes the line int buttonState = 0;. This line tells
the Arduino that the button is initially off.

▨▨ HIGH and LOW refer to the electrical state of the pin: is the pin pro-
viding 5 volts or is it acting as 0v (ground)? In the Arduino pro-
gramming language, HIGH and LOW are used to set or to read the
state of a pin (via digitalWrite() and digitalRead() functions).

▨▨ 1’s and 0’s are part of the binary language that computers
speak. HIGH and LOW means 1 and 0 to computers, including our
Arduino. HIGH and LOW make the code slightly easier for humans
to read, and they are used when we are using the digitalWrite()
and digitalRead() functions. You’ll use 0 and 1 when you are cre-
ating new variables.

Switches, LEDs, and More 215

Looking at the Sketch:
Conditional Statements
Now that you understand what digital inputs do, let’s take a look at
the LEA6_Button sketch’s loop() code.

void loop() {
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);

 // check if the pushbutton is pressed.
 // if it is, the buttonState is HIGH:
 if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }
}

this code involves
some new concepts,
explained shortly

Exploring the loop()
In the first line of the LEA6_Button sketch’s loop() section, the
Arduino uses a function called digitalRead() to check whether a pin
is on or off. In this case, you are checking the pin represented by
your buttonPin variable, so you are evaluating the state of Pin 2. The
results of your digitalRead() function will be either a value of 1 (HIGH)
or 0 (LOW). You then set your variable named buttonState to this value.

 buttonState = digitalRead(buttonPin);

This variable will be set to value of digitalRead function

variable buttonState function digitalRead buttonPin holds the pin number
that is attached to Arduino
(in this example sketch, that’s pin 2)

Learn Electronics with Arduino216

The next part of the loop() code gives you another new program-
ming concept: the use of conditional statements.

What Is a Conditional Statement?
Conditional statements are a powerful way to change what hap-
pens within your code depending on conditions you specify, such as
whether a button is on or off. You have experienced the use of con-
ditional statements in everyday language, as shown in Figure 6.16.

If you don’t clean your room,

you can’t have dessert.

If the light is red, you must stop the car. If the light is green you must go.

If you are reading this page, you will learn Arduino.
Figure 6.16: Conditional statements in English

Conditionals in programming work the same way. They have
three basic parts: the if, the expression you are evaluating, and
what you want to happen if our statement is true. Let’s take a look
at conditional statements in our loop() code.

The first part of the conditional statement within the loop() code
for LEA6_Button is shown here. In some sketches, this could be your
whole conditional statement; ours happens to have a second part—
you’ll learn about it soon.

if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
}

conditional statement part one

Switches, LEDs, and More 217

This part of the conditional statement includes the if, the expres-
sion you are evaluating, and what happens if your expression is true.
Everything that will happen, if the statement is true, is contained
within a set of brackets. You, as the programmer, get to tell the pro-
gram what to do if certain situations happen.

Conditional Statements in loop()
Conditional statements start with an if. The if tells the computer to
evaluate the next expression.

if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
}

statement we are testing

conditional “IF” start of “true” code block

results when true
end of “true” code block

The next part of the conditional statement is the condition to be
evaluated. This is a section of code that the Arduino has to assess
for truth. “True” in a programming context means that the condition
is logically valid. For example, the English statement “One is equal to
one” doesn’t tell us anything interesting, but it is true. The nonsensi-
cal statement “Two plus two equals five” is false. You will see various
types of conditional statements throughout the book that evaluate
what is happening with your Arduino and the rest of the circuit.

In the case of this sketch, the code is trying to evaluate whether the
button is currently pressed. (Remember, pressed means “on,” which
is the same as HIGH in the Arduino programming language.) To test
whether a value is equal to another value, you use two = signs, or ==.

Note Conditional statements start with an if.

Learn Electronics with Arduino218

if (buttonState == HIGH)

is the button currently pressed?

two equals signs test for equality

The last part is the “true” code block, the commands that are run
if the condition is true. There is no limit to the number of actions you
can include inside the true code block, as long as they are all con-
tained within the brackets. In this case, the code block will turn on
the LED attached to the ledPin, also known as Pin 13.

if (buttonState == HIGH) {
 // turn LED on:
 digitalWrite(ledPin, HIGH);
}

Note Conditional statements check for whether something is logi-
cally true.

Tip Think carefully about what you want your conditional state-
ment to do. You might try saying it out loud to yourself.

Conditional Statements: else
What happens if the button is not pressed? For this conditional
statement, there is an else clause, which handles any events that

Switches, LEDs, and More 219

happen when the statement is not true. else is helpful for dealing
with cases where the if statement is false, but it is not required for
every conditional statement. Some conditionals have an else, and
some do not. If this conditional didn’t have an else, then if the condi-
tion you’re evaluating were false, nothing would happen.

For your button code, the else statement can also be broken
down into a simple English statement: “If the button is not pressed,
then turn off the light.”

 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 }

the second part of our
conditional statement means
”if the button is not pressed,
turn off the LED”

Note else is not required in all conditional statements.

Table 6.1 shows a quick summary of the conditional statement we
just examined.

Table 6.1: Conditional statement in LEA6_Button

WHAT IS
HAPPENING IN
THE CIRCUIT?

CONDITION TO BE
EVALUATED

TRUTH
VALUE RESULT

Button is pressed if (buttonState == HIGH) true Turns LED on

Button is not
pressed

if (buttonState == HIGH) false Turns LED off

Learn Electronics with Arduino220

QUESTIONS?
Q: What if I want more than two possible outcomes?

A: Then you might use an else if, or maybe even multiple else ifs.
You can read more about it here: arduino.cc/en/Reference/Else.

Q: Can I place a conditional inside another conditional?

A: Yes, it is possible to have conditionals inside other conditionals.
Although you won’t see an example in this book, they are called
nested conditionals, and they can let you deal with evaluating com-
plicated logic.

Now that you’ve connected your button and made it turn the LED
on and off, you are ready to make your circuit more interesting. Let’s
add a speaker, and then add some code so that the speaker plays a
tone when you press the button. First we’ll show you how to add the
speaker to the breadboard.

Add a Speaker and Adjust
the Code
In this circuit, the button, LED, resistors, and jumpers will stay in
the same place. You are simply adding a speaker; everything else
remains the same (Figure 6.17).

Part to add:

▨▨ 1 8-ohm speaker

As always, before you attach the speaker, make sure your computer
is not connected to the Arduino. Attach one end of the speaker to Pin
11 on the Arduino and the other end to the ground bus (Figure 6.18).

Switches, LEDs, and More 221

It doesn’t matter which end you connect where; like a resistor, the
speaker does not have an orientation. The colors of your speaker wire
may vary, but the speaker does not have a direction.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

5V
GND

13

11

2

schematic for the circuit the circuit with a speaker and one button

schematic for
speaker

pin 11

Figure 6.17: A speaker added to the circuit

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

D
I
G
I
T
A
L

(
P
W
M
~
)

-

AREF

13
 12

 ~11
 ~10
 ~9

RESET

L

GND

detail one end of speaker attached
to pin 11, the other to ground bus

Figure 6.18: Adding the speaker

That’s all there is to adding a speaker. Now you are ready to
adjust your code.

Adding Code for the Speaker
Now that you’ve wired up the speaker, you will adjust the code. First,
save the sketch as a new sketch named LEA6_1_tonebutton.

Learn Electronics with Arduino222

You’re going to add a line of code to the sketch’s initialization sec-
tion and add a variable for the speaker pin.

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; //the number of the LED pin
const int speakerPin = 11; //the number of the speaker pin

// these variables will change:
int buttonState = 0; add this variable to hold

value of the speaker pin

Let’s look at the new line of code more closely. You can see that
it is like your other variable declarations: there is a qualifier, a type,
a name, and a value. Remember, you use the const qualifier, which
stands for constant, when you have a variable that has a value that
will not change.

const int speakerPin = 11; //the number of the speaker pin

qualifier type name value

Tip It’s a good idea to add comments as you type new code to
remember what you are adding to your sketch.

Adjusting setup()
What do you think you will have to adjust in the sketch’s setup() sec-
tion? Remember that setup() is where you state whether the circuit’s
various components are inputs or outputs.

Switches, LEDs, and More 223

What is the speaker? An output. So you’ll add a line of code that
will declare that the pin the speaker is attached to is an output.
Because you made a variable to hold that value, you will use it when
you declare the pin an output.

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
 pinMode(speakerPin, OUTPUT);
}

use the pinMode function
to declare speakerPin an output

Here’s a closer look at this new line of setup() code:

 pinMode(speakerPin, OUTPUT);

sets the Pin variable that stores
the speaker’s Pin number

what we set that Pin to

On to loop()!

Adjusting loop()
As you have seen, loop() has the code that reads whether or not the
button is pressed and then uses a conditional to direct the Arduino
to do something based on that information. Now you will use the
Arduino functions tone() and noTone() inside the conditional. tone()
will generate a note or tone; noTone() will stop it from being played.
Let’s look at all of the loop() code first, and then explore tone() and
noTone() more closely.

Learn Electronics with Arduino224

void loop() {
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);

 // check if the pushbutton is pressed.
 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 330);
 }
 else {
 //turn speaker off
 noTone(speakerPin);
 digitalWrite(ledPin, LOW);// turn LED off:
 }
}

noTone function

tone function

loop function

As we said, tone() will generate a note or tone that can play
through the speaker you just attached. When you use the tone()
function, you need to tell Arduino on which pin to generate a tone
and what note to play. It makes sense that you want to generate a
note on the pin that has the speaker attached.

 tone(speakerPin, 330);

pin note

Let’s take a more in-depth look at the tone() and noTone()
functions.

tone() and noTone() Up Close
What does 330 mean? You know it means the note the speaker will
play, but how do you arrive at that number? The Arduino generates
sound waves that are measured in hertz; 330 is the hertz value of
the note you want your circuit to play.

Switches, LEDs, and More 225

 tone(speakerPin, 330);

pin note

In musical circles, this note is known as an E. From now on, when
we mention the tone() function, we will say that it is generating a
note. Figure 6.19 shows some of the possible note values.

C
D
E
F
G
A

C
B

262
294
330
349
392
440

523
494

NOTE FREQUENCY (hertz)

our first note

the sound an
orchestra tunes to

the values for a few notes

Figure 6.19: Note chart

Tip A more comprehensive note chart can be found on the Arduino
website at arduino.cc/en/Tutorial/ToneMelody.

Now let’s look at noTone(). This function stops the sound from
being played on the pin specified. In this case, that’s speakerPin,
which stores the value of the pin that has the speaker attached to it.

http://arduino.cc/en/Tutorial/ToneMelody

Learn Electronics with Arduino226

If you leave out noTone(), then your note will play continuously once
you press the button the first time.

noTone(speakerPin);

pin to be turned off

Add the tone() and noTone() functions to your code, save your
sketch, and then upload. Now when you press the button, you’ll hear
a note playing from the speaker, as well as see the LED turn on.

We said earlier that we would explain what’s inside the paren-
theses in functions. For example, in the tone() function, what do
speakerPin and 330 mean? Those values are called arguments. Let’s
take a look at them now.

Arguments
You’ve used a number of Arduino functions in this book so far, from
pinMode() to digitalWrite(). You may have also noticed that most
of the functions require something to be placed within the paren-
theses, often some combination of numbers and words. The values
placed inside the function are called arguments.

 digitalWrite(ledPin, HIGH);
function name

arguments

parentheses

Arguments tell your Arduino function important information, such
as which pins are used as inputs. Different functions often have a
different number of arguments. digitalWrite() has two arguments—
the pin number and the value—whereas the Arduino delay() func-
tion has only a single argument—how many milliseconds to pause

Switches, LEDs, and More 227

the program. Some functions won’t need any arguments, whereas
others will require several. Let’s look at the tone() and noTone() func-
tions and how arguments work with them.

In the tone() function, two arguments are passed in: the pin that
the speaker is attached to (in this case, the variable speakerPin) and
the value of the note. Note that the argument values are separated
by a comma.

 tone(speakerPin, 330);

pin note

The noTone() function has one argument: the pin that the speaker
is attached to (again, the variable speakerPin).

noTone(speakerPin);

pin to be turned off

Some functions have no arguments, whereas others have many.
In some functions, not all of the arguments are required. You’ll learn
more about functions and arguments in later chapters.

Next, you’ll add a second button to your tone button keyboard so
you can play more than one note.

Add Two More Buttons and
Adjust the Code
You are going to add another button to your circuit so you can play a
two-note tune on your mini-keyboard instrument (Figure 6.20). You

Learn Electronics with Arduino228

will need another button, another 10 kΩ resistor, and more jumpers.
Remember to unplug your Arduino from your computer before you
add to the circuit.

Parts to add:

▨▨ 1 momentary pushbutton switch

▨▨ 1 10 kΩ resistor (brown, black, orange, gold)

▨▨ Jumper wires

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

5V
GND

13

11

2
3

schematic of 2 button circuit

2 button circuit completed and plugged in

button

10 K resistor

pin 3

Figure 6.20: Two-button circuit

The configuration of this button will be very similar to the first
button you placed in the circuit, except that the new button will be
attached to a different pin on the Arduino (Figure 6.21).

Place the new button across the trench. Use a jumper wire to
connect the button’s top-left pin to the power bus. Attach one lead
of the 10 kΩ resistor to ground and the other lead to the lower-left
pin of the button. Finally, attach Pin 3 to the lower-left pin of the
button and one end of the 10 kΩ resistor with a jumper wire.

Now that you’ve added the second button, it’s time to adjust the
code in the sketch.

Switches, LEDs, and More 229

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

detail of the 2 button circuit

 Figure 6.21: Attaching the second button

Editing LEA6_2_tonebuttons
First, save your sketch as LEA6_2_tonebuttons. You will edit your
code, adding the lines that are marked in bold on the next couple
of pages.

Initialization Code Adjustments

Here is the initialization code updated with two new variables. One is
set to the number of the pin you attached to the second button (3);
the other will hold the state of that button, and it is initially set to 0.

const int buttonPin = 2; // the number of the pushbutton pin
const int buttonPin2 = 3; // a second pushbutton pin
const int ledPin = 13; // the number of the LED pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status
int buttonState2 = 0; // variable holds second pushbutton state

variable set to
number of pin
attached to the
second button

this variable will hold the
state of the second button,
as a 0 or 1 to indicate
whether it is being pressed

setup() Code Adjustments

The following graphic shows the setup() code again, edited to
account for your second button. You use the pinMode() function

Learn Electronics with Arduino230

again, this time to set buttonPin2 (which you set to 3 in the initializa-
tion code) as an input.

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pins as inputs:
 pinMode(buttonPin, INPUT);
 pinMode(buttonPin2, INPUT);
 pinMode(speakerPin, OUTPUT);
}

Next, let’s look at the loop() code and see what you need to add.

Adjusting the loop() Code: else if
You can see that you are reading the value of buttonPin2 (either 1 for
on or 0 for off) with the digitalRead() function and storing it in the
variable buttonState2.

You also have to add a new section inside your if statement—
what is known as an else if. When your if statement is being eval-
uated, it will check for the first condition after the if to see whether
that condition is true or false. As you saw earlier, if the first con-
dition is true (in other words, if button 1 is currently pressed), then
the speaker will play a note at 330 hertz. But if the first condition is
false (in other words, if button 1 is not currently pressed), then the
Arduino will move on to the else if code to determine whether the
statement following the else if is true or false. If it is true (in other
words, if button 2 is currently pressed), then the Arduino will follow
the instructions inside the curly braces.

Let’s look at each line of the else if.

void loop() {
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);
 buttonState2 = digitalRead(buttonPin2);
 // check if the pushbutton is pressed.
 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 330);
 }
 // check if the second button is pressed
 else if (buttonState2 == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 294);
 }
 else {
 noTone(speakerPin); //turn speaker off
 digitalWrite(ledPin, LOW); // turn LED off:
 }
}

reading state of
buttonPin2 and storing
it in buttonState2

else if tests for
second condition

Switches, LEDs, and More 231

First, else if tells us that the Arduino is going to test for another
condition. It is testing whether buttonState2 is HIGH—in other words, is
the button at Pin 3 currently being pressed?

else if (buttonState2 == HIGH){

else if statement condition to be tested curly brace marks
off beginning of else
if block of code

You’ve seen the code in the next line of the else if block before; it
sets the pin attached to the LED to HIGH so that the LED turns on.

 digitalWrite(ledPin, HIGH);

And here’s the last line in the else if block. It uses the tone()
function to play a note on the speaker. This time, the note is
294 hertz—slightly lower than the note played by the first button.

 tone(speakerPin, 294);

again, this time to set buttonPin2 (which you set to 3 in the initializa-
tion code) as an input.

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pins as inputs:
 pinMode(buttonPin, INPUT);
 pinMode(buttonPin2, INPUT);
 pinMode(speakerPin, OUTPUT);
}

Next, let’s look at the loop() code and see what you need to add.

Adjusting the loop() Code: else if
You can see that you are reading the value of buttonPin2 (either 1 for
on or 0 for off) with the digitalRead() function and storing it in the
variable buttonState2.

You also have to add a new section inside your if statement—
what is known as an else if. When your if statement is being eval-
uated, it will check for the first condition after the if to see whether
that condition is true or false. As you saw earlier, if the first con-
dition is true (in other words, if button 1 is currently pressed), then
the speaker will play a note at 330 hertz. But if the first condition is
false (in other words, if button 1 is not currently pressed), then the
Arduino will move on to the else if code to determine whether the
statement following the else if is true or false. If it is true (in other
words, if button 2 is currently pressed), then the Arduino will follow
the instructions inside the curly braces.

Let’s look at each line of the else if.

void loop() {
 // read the state of the pushbutton value:
 buttonState = digitalRead(buttonPin);
 buttonState2 = digitalRead(buttonPin2);
 // check if the pushbutton is pressed.
 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 330);
 }
 // check if the second button is pressed
 else if (buttonState2 == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 294);
 }
 else {
 noTone(speakerPin); //turn speaker off
 digitalWrite(ledPin, LOW); // turn LED off:
 }
}

reading state of
buttonPin2 and storing
it in buttonState2

else if tests for
second condition

Learn Electronics with Arduino232

The following graphic shows the whole block of the else if code
again. Note that the parentheses surround the code that describes
the condition being tested, and the curly brackets surround what
you want to do if the condition is true.

 else if (buttonState2 == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 294);
 }

start curly brace

end curly brace

To test your code, attach your computer to your Arduino, save
your code, verify it, and upload in to the Arduino.

Now you can play two different notes on your two-button
keyboard.

QUESTIONS?
Q: What will happen if I push both buttons at once?

A: The way we have written the conditional statement, only the
first note will play if you push both buttons at once. This works in our
favor because the Arduino tone() function isn’t able to play more
than one tone through the speaker at a time.

Q: What will happen if I change the second note number in the
tone() function to something other than 294?

A: The note chart you saw a few pages ago provides just a selection
of the possible notes you can play. We left out all sharp/flat notes—
this isn’t a lesson on music theory—but if you randomly pick a number
for the second note, chances are it will sound slightly off—like an out-
of-tune guitar—compared to the first note.

Switches, LEDs, and More 233

Adding the Third Button
Now you’re going to add a third and final button to the circuit (Fig-
ure 6.22). Be sure to unplug your Arduino from your computer
before adding this button!

Parts to add:

▨▨ 1 momentary pushbutton switch

▨▨ 1 10 kΩ resistor (brown, black, orange, gold)

▨▨ Jumper wires

5V
GND

13

11

2
3
4

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

third button
added at
pin 4

schematic of the 3 button circuit 3 button circuit completed and plugged in

Figure 6.22: Three-button circuit

Place the button across the trench above the other two buttons.
Use a jumper to connect the button’s top-left pin to the power
bus. Attach one lead of the 10 kΩ resistor to ground and the other
lead to the lower-left pin of the button. Finally, attach Pin 4 to
the lower-left pin of the button and one end of the 10 kΩ resistor
(Figure 6.23).

Now that you’ve added the third button to the circuit, it’s time to
adjust the sketch.

Learn Electronics with Arduino234

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

GND

 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

detail of the 3 button circuit

 Figure 6.23: Adding the third button

Editing the LEA6_3_tonebuttons Sketch
Save your sketch as LEA6_3_tonebuttons, and we’ll look at the
code you have to adjust. This will be very similar to the adjustments
you made to the previous sketch when you added the second but-
ton. Follow along and edit your sketch to match the following code.

Initialization Code Edits

You are attaching the third button to Pin 4. You’re also adding a
variable called buttonState3, which holds the value that indicates
whether or not the pin is being pressed (1 or 0, HIGH or LOW, on or off).

const int buttonPin = 2; // the number of the first pushbutton pin
const int buttonPin2 = 3; // a second pushbutton pin
const int buttonPin3 = 4; // third pushbutton pin attached to pin 4
const int ledPin = 13; // the number of the LED pin
const int speakerPin = 11; // the number of the speaker pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status
int buttonState2 = 0; // variable holds second pushbutton state
int buttonState3 = 0; // third pushbutton state

setup() Code Edits

In our setup() code, we set the variable buttonPin3 (which holds the
value 4 to indicate pin 4) to an INPUT. All three of our buttons have
now been set as INPUTs.

Switches, LEDs, and More 235

void setup() {
 // initialize the LED pin as an output:
 pinMode(ledPin, OUTPUT);
 // initialize the pushbutton pins as inputs:
 pinMode(buttonPin, INPUT);
 pinMode(buttonPin2, INPUT);
 pinMode(buttonPin3, INPUT);
 pinMode(speakerPin, OUTPUT);
}

Three-Button “Instrument” loop() Function

The updated loop() function is shown next. It reads the state of
buttonPin3 and stores it in buttonState3. It also has an additional else
if statement, which tests to see whether the third button is being
pressed, and if so, plays a note (one slightly lower than the note for
button 2) and lights the LED.

void loop() {
 // read the state of the pushbutton values:
 buttonState = digitalRead(buttonPin);
 buttonState2 = digitalRead(buttonPin2);
 buttonState3 = digitalRead(buttonPin3);
 // check if the pushbutton is pressed.
 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 330);
 }
 // check if the second button is pressed
 else if (buttonState2 == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 294);
 }
 // check if the second button is pressed
 else if (buttonState3 == HIGH) {
 digitalWrite(ledPin, HIGH);
 tone(speakerPin, 262);
 }
 else {
 // turn speaker off:
 noTone(speakerPin);
 digitalWrite(ledPin, LOW); //turn LED off
 }
}

saving all three button
values in separate variables

button 1 code

button 2 code

button 3 code

code that runs
when no button
is being pushed

Learn Electronics with Arduino236

Your code can now respond when you press each of the three
buttons.

Play Your Mini-Keyboard Instrument
You’ve written your code and adjusted your circuit. Your three-
button mini-keyboard instrument should now work. To take it for a
spin, attach your computer to your Arduino, save your code, verify it,
upload it to the Arduino, and then press the buttons. Remember to
press one button at a time, since the speaker can play only one note
at a time.

Before we move on to look at how some of the components are
working in this circuit, we’ll briefly review what you’ve learned about
writing code while building this project.

Reviewing Electronic and
Code Concepts
You learned a few new, and very important, programming concepts
in this chapter. These concepts are critical to writing code in all pro-
gramming languages, though the details might be a little different
depending on the language. Let’s look once more at variables and
conditionals.

Variables
A variable is a container in your code that can hold different values.

Switches, LEDs, and More 237

const int speakerPin = 11;

qualifier type name value

Conditional Statements
A conditional statement evaluates a condition and executes instruc-
tions if that condition is true. If the conditional statement contains
an optional else if or else block, then it can test for multiple condi-
tions, and it sometimes tells the code to do something if the condi-
tions are not true.

 if (buttonState == HIGH) {
 digitalWrite(ledPin, HIGH);
 }
 // check if the second button is pressed
 else if (buttonState2 == HIGH) {
 digitalWrite(ledPin, HIGH);
 }

Let’s take a quick look at how the electronic components you used
in this chapter work in a circuit.

How Does the Button Work?
The default, unpressed state of the button is open, meaning elec-
tricity can’t flow through it. In order for electricity to flow through
your button, it must be pressed down, making a connection between

Learn Electronics with Arduino238

the pins (Figure 6.24). When you read the value on the pin that is
attached to the button, you will see that it is HIGH.

 ~5
 4

 2
 1
0

 ~3

TX

RX

pressing the button connects the pins within
the button and allows electricity to flow

pin is set to HIGH
when button is pressed when the button is

pressed, these pins
are temporarily connected
to each other

Figure 6.24: Pushing the button

There is nothing attached to the pins on the other side of the
trench, but the pins on that side of the trench are also connected
when the button is pressed (Figure 6.25).

with the button pressed,
electricity has a complete
path to flow through

when the button is NOT pressed,
it means the circuit is open
and electricity CANNOT flow

Figure 6.25: How a switch functions

Switches, LEDs, and More 239

How Does the Speaker Play
Different Notes?
The tone() function built into the Arduino knows how to change
the power provided by your digital pin to create different notes
from your speaker. Without getting too technical, the note value
you include in your tone() function tells the Arduino how to rapidly
change the voltage to create different notes (Figure 6.26).

Figure 6.26: A change in voltage to the speaker will play different notes.

Summary
This chapter taught you more about programming. You learned what
a variable is and how to use it, and how to use conditional state-
ments to control the flow of your program. You also learned more
about digital output and how to add a digital input to your circuit
to make your project interactive. You can download the code here:
github.com/arduinotogo/LEA/blob/master/LEA6_3_toneButtons.ino.

In the next chapter, we will show you how to attach analog sen-
sors or other inputs to a circuit and use the information you gather
from them to do more with your output components than turn them
on and off.

http://github.com/arduinotogo/LEA/blob/master/LEA6_3_toneButtons.ino

In the previous chapter, you learned how to put buttons
into a circuit to play notes through a speaker and to

turn an LED on and off. This chapter shows you how to
attach sensors to a circuit and use the information you
gather from them to create more varied experiences. You
will also learn how to use the Arduino IDE to look at infor-
mation coming in from your sensors.

There’s More to Life than
On and Off!
You have learned how to attach buttons to your circuit so you can
make your projects interactive using digital inputs and outputs with
your Arduino sketches. With digital input, you have only two possible
values: on or off (a.k.a. HIGH or LOW, 1 or 0). But sometimes you might
want to use values that are not as simple as on or off. In this chap-
ter, you will see how to read values from sensors and variable resis-
tors, and then use those values in your Arduino sketches to produce
different effects.

You will learn these concepts by building a circuit with a potenti-
ometer, which is like a knob that can be turned to give you a range of
values beyond just 1’s and 0’s. You will use your potentiometer first

Analog Values 7

Learn Electronics with Arduino242

to adjust the brightness of an LED and then to play different notes
from a speaker.

Why are we showing you how to use analog sensors and infor-
mation? And what exactly do we mean by analog?

You have seen that digital information has only two possibilities:
on and off. Analog information, on the other hand, can hold a range
of possible values. We perceive the world as a stream of analog
information via our sight, hearing, and other senses. By using ana-
log information with your Arduino, you can respond to user input in
a complex fashion. You can control the brightness of an LED, setting
it to shine brightly, grow dimmer, or show any range of values in
between.

Note Analog information is continuous and can hold a range of
possible values.

Once you understand how analog values work, you will use the
values to create a homemade musical instrument called a theremin.
A theremin is a musical instrument in which the pitch of the sound is
controlled by the distance of the musician’s hands from the instru-
ment, as shown in Figure 7.1. (That’s right; you don’t actually touch a
theremin to play it.) You may have heard the eerie tones of a there-
min on a soundtrack for a movie or television show. Our version will
use a speaker and a photoresistor; as you raise or lower your hand
over the photoresistor, the speaker will play different notes.

In all of the projects in this chapter, a sketch will read information
from an analog input and then use that information to control an
output, such as the brightness of an LED or the tones emanating
from a speaker.

You will be using analog information in this chapter and in some
of the projects in future chapters. Let’s get started!

Analog Values 243

playing our light-based theremin

Figure 7.1: Playing a theremin

The Potentiometer Circuit
Figure 7.2 shows the schematic and a drawing for your first circuit
of the chapter. The circuit uses the potentiometer to change the
brightness of your LED. The LED gets brighter as you turn the poten-
tiometer until it is all the way lit, whereas turning it the opposite way
dims the LED until it is off.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

5V
GND

A0

9

potentiometer circuitpotentiometer schematic

Figure 7.2: The first circuit you will build in this chapter

Learn Electronics with Arduino244

We’ll discuss the analog input pins on the Arduino before we get
started building our circuit.

The Arduino’s Analog Input Pins
Remember back in Chapter 2, “Your Arduino,” when you first took
your Arduino out of the box? We pointed out that it has analog input
pins, which are pins that can read sensors that have a range of pos-
sible values. Let’s take a closer look at those pins in Figure 7.3.

A0

A1

A2

A3

A4

A5

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

A
N
A
L
O
G

I
N

A0
A1
A2
A3
A4
A5

.ARDUINO.CC

detail of analog pins Arduino Uno
Schematic of

Arduino Uno with
analog pins labelled

Figure 7.3: Analog pins on the Arduino

The analog input pins are located opposite the digital input/output
pins on the Arduino, below the power and ground pins. There are six
pins, labeled A0 through A5, with the “A” indicating that it is for “analog.”

When one of these pins is connected to an analog input, it can
return a range of values, from 0 to 1023. This range of numbers is
related to how the Arduino manages memory. A detailed explanation
is beyond the scope of this book; what’s important for you to know is
that it is a much larger range than just 1 or 0, allowing you to create
varied experiences rather than simply turning something on or off.

Analog Values 245

What’s an analog input? Any component, often some type of
sensor, that can give you a range of values, not just on and off. The
first analog input you’re going to work with is a potentiometer, which
you’ll attach to Pin A0.

The schematic in Figure 7.3 shows the location of all of the analog
pins on your Arduino.

Meet the Potentiometer
A potentiometer is a type of variable resistor, which means its amount
of resistance can change. A potentiometer, sometimes called a pot, is
a knob or dial that can be turned to increase or decrease the amount
of resistance depending on how far, and in which direction, it is turned
(Figure 7.4). Potentiometers come in many sizes and shapes. You will
be using a 10 kΩ potentiometer in your circuit.

A potentiometer has three pins: one that attaches to power,
one that attaches to ground, and one that attaches to a pin on the
Arduino. In the following pages, we’ll show you how to attach the
potentiometer to a breadboard.

schematic symbol for variable resistora potentiometer

Figure 7.4: Component drawing and schematic for the potentiometer

Learn Electronics with Arduino246

Note A variable resistor can provide different amounts of
resistance.

QUESTIONS?
Q: Is a potentiometer just like the knob on an old TV set?

A: Not exactly. The dial on an old TV has set points, where it stops
as you turn it to “tune in” a channel. A potentiometer generally has
stop points at both ends, where it has either maximum resistance or
minimum resistance. It can be turned smoothly between those two
endpoints.

Potentiometer Circuit,
Step by Step
The first circuit you will build will contain a potentiometer that con-
trols the brightness of an LED (Figure 7.5).

5V
GND

A0

9

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

schematic for the potentiometer LED circuit

symbol for
potentiometer

the completed potentiometer circuit

Depending on
which direction
you turn the
potentiometer, the
LED will dim or
brighten

Figure 7.5: Completed potentiometer and LED circuit

Analog Values 247

You’ll need these parts:

▨▨ 1 LED

▨▨ 1 220-ohm resistor (red, red, brown, gold)

▨▨ 1 10 kΩ potentiometer

▨▨ Jumper wires

▨▨ Breadboard

▨▨ Arduino Uno

▨▨ USB A-B cable

▨▨ Computer with Arduino IDE

You will start with a basic circuit where the anode of an LED is
attached through a 220-ohm resistor to the Arduino and the cath-
ode is attached to ground. There is one key difference between this
circuit and the circuit you have used in previous chapters: you are
using Pin 9 instead of Pin 13 on the Arduino board, as shown in Fig-
ure 7.6. We’ll explain why soon.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

jumper attached
to pin 9
on Arduino

Figure 7.6: LED attached to Pin 9

Next you’ll place the potentiometer in the breadboard.

Learn Electronics with Arduino248

Adding the Potentiometer
As you have seen, a potentiometer has three pins. In your circuit, you
will attach the middle pin to a pin on the Arduino, one of the outer pins
to the power bus, and the other outer pin to the ground bus. It doesn’t
matter which outer pin goes to power and which one to ground.

You will place the potentiometer parallel to the trench, as
depicted in Figure 7.7. Each pin of the potentiometer is in a separate
row of tie points, with an empty tie point between each of the pins.
Orient the potentiometer facing away from the Arduino, with the
shaft over the trench, as you can see in Figure 7.7. This will make it
easier for you to reach the potentiometer to turn it and to integrate
it into the rest of the circuit.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

each pin is in a separate row of tie points

side view of placing the
potentiometer.

detail top view of potentiometer

adding the potentiometer top view

Figure 7.7: Attaching the potentiometer

Analog Values 249

Next you’ll attach the potentiometer to the power and
ground buses.

Attach the pin at the top of the potentiometer to the ground bus
with a jumper. Then, attach the pin at the other edge of the poten-
tiometer to the power bus (Figure 7.8). Make sure the jumpers and
the pins of the potentiometer are in the same row of tie points.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L
detail of jumpers attaching pins of
potentiometer to power and ground buses

Figure 7.8: Adding jumpers to the potentiometer

Finally, attach the middle pin of the potentiometer to Analog
Input Pin A0 with a jumper (Figure 7.9).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

jumper attached to pin A0 and to middle pin of the potentiometer

detail of jumper attached
to middle pin of potentiometerdetail of a jumper

attached to pin A0

Figure 7.9: Attaching the potentiometer to the analog pin

Learn Electronics with Arduino250

Dim the Lights
At this point, connect your Arduino to your computer with the USB
cable. Let’s load up an example sketch from the Arduino IDE. To load
the sketch, choose File > Examples > 03.Analog and select AnalogIn-
OutSerial. Save this sketch as LEA7_AnalogInOutSerial.

After you have saved it, click Verify, and then click Upload.
When you turn the potentiometer, the LED should get dimmer or

brighter, depending on which way you turn it (Figure 7.10).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Figure 7.10: The LED gets brighter or dimmer when you turn the potentiometer.

Analog Values 251

THINK ABOUT IT…
You probably use a potentiometer every day for volume control on
a stereo or for a dimmer light switch. Can you think of other devices
that you might want to try to control with a potentiometer?

Next you’ll see how your sketch allows the circuit to interpret the
potentiometer’s resistance value and change the LED’s brightness
accordingly.

What Role Does the Sketch Play
in Your Circuit?
You’ve seen the circuit in action, so you understand what it does, but
how does the Arduino translate the potentiometer resistance value
to a brightness value for the LED? To figure that out, let’s take a look
at how electricity and information flow through the circuit.

Step 1: Power in to the Arduino

Five volts of power come into the Arduino from the computer via the
USB cable.

computer Arduino5 volts

Step 2: Power in to the Potentiometer

Five volts get sent to one side of the potentiometer from the 5v pin
on the Arduino (via the power bus).

Learn Electronics with Arduino252

Arduino 5 volts Potentiometer

Step 3: Potentiometer Changes the Voltage

The potentiometer creates resistance, lowering the voltage, and
then sends this new voltage back to the Arduino via Pin A0.

Pin A0
new

 voltagePotentiometer

Step 4: Arduino Reads the Voltage

On Pin A0, the Arduino reads the voltage coming in from the poten-
tiometer and translates the voltage value to a number on the
0–1023 analog scale we mentioned earlier. Sometimes this reading
takes a longer amount of time. We will talk about how the Arduino
determines the value later on in this chapter.

Pin A0

new
 voltage

Arduino
voltage to

analog value

Analog Values 253

Step 5: Arduino Converts the Value

The Arduino changes the analog value from the potentiometer to
a translated analog value using the function map(), which we will
explain later in the chapter. This step is crucial, since the LED won’t
understand values between 0 and 1023 but will accept values
between 0 and 255.

Arduino
translate

value Arduino

Step 6: Arduino Writes the Value to the LED

The Arduino sends this translated analog value to the LED through
Pin 9 using PWM. We will explain what PWM is and how it works
later in the chapter.

Arduino
pin 9

translate
value LED

Step 7: LED Lights Up

The LED lights up; how bright or dim it is will be
determined by the analog value it received.

As you can see, the sketch performs the
important step of translating the information
from the potentiometer into a value that is
used to control the brightness of the LED.

Learn Electronics with Arduino254

Now that you’ve seen an overview of what’s going on in the circuit
and how it interacts with the sketch, it’s time to dive into the details
of the sketch.

The LEA7_AnalogInOutSerial
Sketch
This Arduino sketch reads the value of voltage on Pin A0, translates
it to a value the LED can understand, and then sends it out to Pin 9.
As in other sketches you have seen, there is an initialization section,
a setup() function, and a loop() function. We have again cut out the
comments at the top of the sketch.

initialization

setup()

loop()

Analog Values 255

LEA7_AnalogInOutSerial Initialization
The initialization section declares and sets an initial value for some
variables you will need in your sketch. As you learned in the previous
chapter, when you declare a variable, you give the variable a name,
indicate what type of information it will hold, give it a value, and in
some cases add a qualifier that indicates whether it is a constant.

const int analogInPin = A0; //Analog input pin attached to potentiometer
const int analogOutPin = 9; //Analog output pin attached to LED

int sensorValue = 0; //value read from the pot
int outputValue = 0; //value output to the PWM (analog out)

As you can see from the excerpted lines of code here, our sketch
includes four variables. Here are the details of what each one does:

analogInPin

Holds the pin number that you take the potentiometer reading from.
You set this to Pin A0 (Figure 7.11).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Figure 7.11: analogInPin set to Pin A0

Learn Electronics with Arduino256

analogOutPin

Holds the pin number that is connected to your LED. This is set to Pin
9 (Figure 7.12).M

A
D

E
 IN

 ITA
LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP
.ARDUINO.CC

L

Figure 7.12: analogOutPin set to Pin 9

sensorValue

This variable is initially set to 0; it will hold the voltage value coming
from the potentiometer (Figure 7.13).

Figure 7.13: sensorValue will hold the changing volt-
age level on Pin A0 coming from the potentiometer.

Analog Values 257

outputValue

This is initially set to 0; it will hold the value the Arduino will be send-
ing to the LED, which determines how brightly it shines (Figure 7.14).

Figure 7.14: outputValue will hold the value the Arduino
will send to Pin 9 to control the brightness of the LED.

The initialization section creates these variables so you can use
them later on, in the loop() section. Next up: the setup() section.

LEA7_AnalogInOutSerial setup()
The setup() section for the sketch is only one line long, but it is a
new Arduino function we have not talked about: Serial.begin(). This
function uses the serial object.

The serial object is a set of functions and variables that allows
the Arduino to communicate with other devices. In this sketch, you
will use it to communicate with your computer. begin() is a function
of the serial object.

Note A function is a way of organizing code or blocks of instruc-
tions to the computer.

We talked about functions in Chapter 3 when we discussed
setup() and loop(). Here’s how the begin() function appears in
our setup() code:

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

Learn Electronics with Arduino258

This line of code tells the Arduino to open a line of communica-
tion with your computer (they will communicate through the USB
cord that connects them). It also sets a rate of communication for
the Arduino and your computer to communicate: 9600 bauds per
second (bps). The exact baud rate is not important at this point
as long as your Arduino and your computer have a shared rate of
communication.

We will look at serial communication more closely in a few pages;
for now, let’s move on to the loop() section of the code.

Note begin() is a function of the serial object that sets up com-
munication between devices.

LEA7_AnalogInOutSerial loop() Code
Here’s an overview of what the loop() code does:

	 1.	It takes an analog reading from the pin your potentiometer is
connected to and stores it in a variable.

	2.	It translates that value into something the LED can understand
(a value on the 0–255 scale).

	3.	It writes the adjusted value to the LED (Pin 9).

	4.	It sends the two values to your computer (sensorValue and
outputValue) so that you can see how they change over time.

	5.	It waits a short amount of time (2 milliseconds) before your next
reading.

These steps happen in this order repeatedly for as long as your
Arduino has power.

Let’s look at the code again:

Analog Values 259

void loop() {
 // read the analog in value:
 sensorValue = analogRead(analogInPin);
 // map it to the range of the analog out:
 outputValue = map(sensorValue, 0, 1023, 0, 255);
 // change the analog out value:
 analogWrite(analogOutPin, outputValue);

 // print the results to the serial monitor:
 Serial.print("sensor = ");
 Serial.print(sensorValue);
 Serial.print("\t output = ");
 Serial.println(outputValue);

 // wait 2 milliseconds before the next loop
 // for the analog-to-digital converter to settle
 // after the last reading:
 delay(2);
}

loop() code

reads the value on Pin A0 with the
potentiometer and stores it in sensorValue

scales sensorValue and stores
it in the outputValue variable

sends sensorValue and
outputValue to the computer

sends outputValue to Pin 9

calls the delay() function and tells it to
pause for 2 milliseconds; after that pause,
the loop() code starts over

Analog Input: Values from
the Potentiometer
The first line of code has the Arduino check the value of voltage
coming in from the potentiometer on Pin A0. This value is stored in
sensorValue.

// read the analog in value:
sensorValue = analogRead(analogInPin);

read value from the potentiometer attached to pin A0

How is the changing resistance of the potentiometer affecting the
values coming out of Pin A0?

Learn Electronics with Arduino260

If you were to use a multimeter to read the voltage out of Pin A0
when the potentiometer is all the way to one side, giving maximum
resistance, you would read a voltage of 0. If the potentiometer were
turned all the way to the other side, with no resistance, you would
read a voltage of 5 volts. Remember Ohm’s law? Here we see it in
action, with a changing amount of resistance affecting the amount
of voltage.

The values that we get using the analog pins are a scaled mea-
surement of voltage. The Arduino converts voltages values between
0V and 5V into a number between 0 and 1023. This process is called
analog-to-digital conversion.

Figure 7.15 shows a ruler that demonstrates the conversion from
voltage to an analog value reading. On the top you see voltage
ranging from 0 to 5 volts; on the bottom you see the range you can
get from an analog input pin on the Arduino, 0–1023.

Note Analog input pins read voltage levels from 0V to 5V and
convert them to a range of values from 0 to 1023.

voltage to analog value rule
voltage values

equivalent
analog values

Figure 7.15: Converting voltage to an analog reading

On the ruler in Figure 7.15, you can see that at 0 volts you get a
reading of 0, and at 5 volts you get a reading of 1023. What hap-
pens at the values in between 0 and 5 volts? The analog input
value is a number between 0 and 1023, so at 2 volts you get a
value of 409. At 3 volts you get a value of 614. These values are

Analog Values 261

automatically calculated by the sketch. You will see how this works
with our projects later in this chapter.

Why do you have to convert the value of the voltage? You will see
later in this chapter, and in Chapter 8, “Servo Motors,” how we use
the value (between 0 and 1023) with some of our other functions.

Analog Input in Code: analogRead()
The sketch first takes an analog reading from the pin your potenti-
ometer is wired to, Pin A0, and stores the value of the reading in a
variable named sensorValue.

sensorValue = analogRead(analogInPin);

First loop line: analogRead()

the sketch saves the
analog value from the

potentiometer into
this variable

Pin A0, analog pin attached to
potentiometer

analogRead() function

Remember that analog means that we can have a value other
than 0 or 1. analogRead() reads a value from an analog input pin that
can range between 0 and 1023,
as you just learned. If you turn
the potentiometer all the way to
one side, there is no resistance, so
the value is at its highest, which is
1023. When you turn it all the way
to the other side, there is maximum
resistance, so the value is reduced
to 0. The process of reading the
value on the pin takes a small
amount of time.

Let’s bring back our analog
value ruler and take a look again (Figure 7.17).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

 Figure 7.16: Turning the potenti-
ometer fades and brightens the LED.

Learn Electronics with Arduino262

voltage to analog value rule
voltage values

equivalent
analog values

Figure 7.17: Voltage-to-analog conversion

If the potentiometer sends 2 volts to the A0, then the value read
on that pin is 409. If instead you turn the potentiometer to let 3 volts
into the pin, then your new value read will be 614.

Now that you have a better understanding of analogRead(), let’s
look at our next line of code in the sketch.

Adjusting Values: map()
The next step is to adjust the value of the sensorValue and store it in
a new variable. On the next line in our loop() function, you see the
second variable, outputValue, being assigned the value of a map()
function. The map() function automatically scales one sensor value
and converts it to another range of values.

 // map it to the range of the analog out:
 outputValue = map(sensorValue, 0, 1023, 0, 255);

loop() code line two: map() function

Why are you mapping your value? Why can’t you just use the
numbers that you get from reading Pin A0? When we looked at the
sketch earlier, you saw that you will be using analogWrite() to write
values to Pin 9. This function takes a range of values from 0 to 255.
As the values coming from your analog input pin can range from 0
to 1023, you have to convert that range, 0–1023, to 0–255 in order
to pass the value on to Pin 9 (Figure 7.18).

Analog Values 263

mapping values ruler

our map() function
will output
these values

our map() function
takes these

values in

Figure 7.18: Converting the range from 0–1023 to 0–255

The map() function asks you which variable you want to scale,
what the expected minimum and maximum scaled values are for
your sensor variable, and what your minimum and maximum values
should be.

 outputValue = map(sensorValue, 0, 1023, 0, 255);

map() function breakdown
sensor value variable

variable to save
mapped a.k.a.
scaled value

expected input minimum
and maximum values

desired output
minimum and
maximum values

The value saved to outputValue is a scaled-down number. If your
sensor reads 1023, map() will set the variable outputValue to 255.
By giving the map() function these ranges, almost all the values you
save in outputValue will be smaller than the original reading indi-
cated. The one exception is if you read 0 on the sensorValue—that is
still saved in outputValue as 0.

Note The map() function is used to scale values from one range
to another.

Learn Electronics with Arduino264

Writing a Value to a Pin: analogWrite()
Now that you have mapped your value, you’re ready to send a value
out to your LED and light it up. The next step that the sketch per-
forms is to write the adjusted value to the LED pin.

You’ll use the analogWrite() function to send analog values to
some pins on your Arduino. We’ll talk about these special pins in a
moment, but first let’s take a look at the analogWrite() code from our
sketch.

 // change the analog out value:
 analogWrite(analogOutPin, outputValue);

loop() code line three: analogWrite()

analogWrite() is similar to the digitalWrite() function we’ve
already discussed. analogWrite() needs to know two things: the pin
you want to write to, and the value you want to write to that pin. In
this sketch, you are sending the analogOutPin, set as Pin 9, a value
from the variable outputValue, which you set with the map() function.
By sending an analog value between 0 and 255, the Arduino actu-
ally sends a voltage between 0V and 5V back to your LED. Let’s look
at how the range from 0 to 255 maps to the voltage level on the pin
(Figure 7.19).

mapping 0 - 255 to a voltage value between 0V and 5V

our analogWrite()
takes these values

our analogWrite() will
send these voltage

values to pin 9

Figure 7.19: Mapping 0–255 back to a voltage value

Analog Values 265

Note analogWrite() takes a value between 0 and 255 and writes
a value between 0 and 5 volts to a pin.

The Arduino is able to send an analog value by using a process
called PWM. We will explore how PWM works in a few pages.

How Do the Analog and Digital Functions Differ?

Before we get further into analogWrite() and how it works with PWM,
let’s break down how analogRead() and analogWrite() compare to the
digitalRead() and digitalWrite() functions we have used in previ-
ous chapters. We have been making the comparison all along, but
Table 7.1 shows how these four functions compare.

Table 7.1: Analog and digital functions compared

NAME OF
FUNCTION WHAT IT DOES

ARGUMENTS IT
REQUIRES

RANGE OF
VALUES

digitalRead() Reads the value
of a digital
input pin

The number
of the pin it is
assigned to read

Reads either 1 or
0 from pin

digitalWrite() Writes a value
to a digital
output pin

The number of
the pin it is writ-
ing a value to
and the value it is
writing

Writes either 1 or
0 to pin

analogRead() Reads the value
of an analog
input pin

The number
of the pin it is
assigned to read

Reads an integer
between 0 and
1023 from pin

analogWrite() Writes a value
to an output pin
with PWM

The number of
the pin it is writ-
ing a value to
and the value it is
writing

Writes an inte-
ger between 0
and 255 to pin,
which results in
a voltage value
between 0 and 5
volts

Learn Electronics with Arduino266

PONDER THIS
Can you think of a circuit you might want to build using ana-
log information? How will it be different from a circuit that uses
digital information?

Analog Values as
Output: PWM
As you have seen in earlier chapters, the Arduino is capable of put-
ting out only a few different voltage values: either 5V or 3.3V. All
of the I/O pins on the Arduino are set to output 5V when used to
control circuit components. If the Arduino is capable of producing
only 5V on your output pins, how can you create analog values? The
Arduino has the built-in capacity to use a technique called pulse
width modulation, or PWM.

So how does PWM work? Imagine turning the lights on and then off
in your room. The room looks bright for a moment, and then dark again.
If you continue to flip the light switch back and forth at a slow rate, the
room just appears to be bright, then dark, over and over (Figure 7.20).

OFF

ON

OFF

ON

dark light dark light

Figure 7.20: Flipping light switches

Analog Values 267

But something strange happens when you flip the light switch
faster and faster. Rather than just appearing bright followed by
dark, your room will have a light level somewhere in between bright
and dark. In fact, the room will also appear brighter if you leave the
light on for slightly more time than you leave it off. Your room will
have a light level that is the average brightness that is dependent
on the percentage of time that the light is on in relation to the per-
centage of time the light is off.

PWM uses a technique similar to flipping the light switch to create a
brighter or dimmer light level. When you use PWM on the Arduino, the
level of voltage on the PWM pin is switched on and off at various rates
at regular intervals. It is sometimes 0 volts, and sometimes 5 volts.

5V

0V

a PWM signal in which the pin is outputting either 0 or 5 volts

Figure 7.21: PWM signal

Note PWM creates an average value by turning the pin off and
on very quickly.

By varying the amount of time the pin is turned on and off, the
Arduino creates an average voltage value between 0 and 5.

Where Are the PWM Pins?
So which pins can you use with PWM? A number of the digital pins
on the right side of the Arduino can be used with PWM: Pins 3, 5, 6,
9, 10, and 11. As you can see, each one of the pins is marked by the
~ symbol on the Arduino (Figure 7.22).

Learn Electronics with Arduino268

D
I
G
I
T
A
L

(
P
W
M
~
)

- 12
 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 ~3

PWM D11

PWM D10

PWM D9

PWM D6

PWM D5

PWM D3

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Arduino Uno
Pins labeled with ~
are PWM pins schematic of Arduino Uno

with PWM pins labeled

Figure 7.22: Labeled PWM pins on the Arduino

QUESTIONS?
Q: Are PWM and analogWrite() the same thing?

A: No, PWM and analogWrite() are related but they are not the
same thing. analogWrite() is an Arduino function that tells the Ardu-
ino to use a pin to create analog values. This function uses the tech-
nique of PWM to create analog values.

Q: PWM turns the pins on and off, and that makes a different value
somehow?

A: That’s right. Since the Arduino is turning the pin on and off so
quickly, the effective value for the voltage that comes out of the pin
is the average time the pin is set to HIGH. Note that the Arduino is not
producing a different value of voltage but rather just using this trick
of averages to create the analog value.

Analog Values 269

Q: The PWM pins can also be used as digital pins?

A: That’s right. Depending on your circuit and your sketch, you
can use Pins 3, 5, 6, 9, 10, and 11 either as digital pins or as PWM
output pins.

Serial Communication
You’ve seen how the sketch works with the Arduino to take in infor-
mation from the potentiometer, change it, and then send it to the
pin controlling the LED. Next we’ll look at how and why you print val-
ues to your computer using serial communication. The second-to-
last step the sketch performs is printing two values to your computer
(the value from an analog input pin and the value you send to the
LED pin) so that you can see how they change over time.

Why Do You Need to See Arduino
Input and Output Information on
Your Computer?
Sometimes it’s helpful to find out information about how your sketch
is running. This knowledge can be useful if you’re trying to debug
your circuit. For example, you can see the values you have on your
input and output pins. We’ll show you how to do this shortly.

What Does Serial Mean?
Serial, in this context, is a type of communication protocol. It refers
to a way that two devices can communicate by sending informa-
tion across a pair of wires. By changing the value of voltage along a
wire from HIGH to LOW, the Arduino can transmit information across
the USB cable to our computer (Figure 7.23). Remember the digital
output pins marked TX and RX on the Arduino (digital Pins 1 and 0)?

Learn Electronics with Arduino270

These pins are used to communicate with your computer. TX sends;
RX receives.

information from Arduino
displayed in the serial
monitor window on our
computer

values sent
from Arduino

serial communication
sends values from the
Arduino to a computer

Figure 7.23: Serial communication allows the Arduino to talk to a computer.

Serial communication is an easy and efficient method for your
Arduino to communicate with your computer. The Arduino IDE con-
tains a window called the serial monitor, which displays the infor-
mation it receives from the Arduino, such as the values your sensors
detect or what function is currently running.

We’ll take a look at the serial monitor first before getting back to
our code.

Using the Serial Monitor
The serial monitor is a feature of the Arduino IDE that shows you infor-
mation sent from the Arduino. It is helpful for debugging and for learning
what values a sensor or variable resistor produces. To open the serial
monitor, click the button at the top of the Arduino IDE (Figure 7.24).

serial monitor button

Figure 7.24: Serial monitor button

Analog Values 271

When you open the serial monitor, you see a window that dis-
plays responses from the Arduino, and a drop-down menu that
controls the rate of communication, or baud rate, between your
computer and the Arduino. As we’ve mentioned before, the baud
rate is the rate of communication that the computer and Arduino
use to talk to each other. By default, the baud rate of your serial
monitor will be set to 9600, which matches the value you set in the
Serial.begin() function in your setup() code, so you shouldn’t have
to make any adjustments.

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}

setup()

Note The Arduino and your computer must use the same rate of
communication: the value set in Serial.begin().

Figure 7.25 shows what the serial monitor window looks like when
running this sketch.

Information from
Arduino

baud rate
drop down menu

Figure 7.25: Running the serial monitor

Learn Electronics with Arduino272

Now that you understand where to find your serial monitor, let’s
explore the use of the serial object in the loop() code.

Looking at the Serial Code
The serial object has two functions for sending information to your
computer: Serial.print() and Serial.println(). Our sketch uses
both of these functions in order to format the information on the
computer screen.

 Serial.print("sensor = ");
 Serial.print(sensorValue);
 Serial.print("\t output = ");
 Serial.println(outputValue);

code from loop() for printing to our computer

All four of these lines of code together print the single line in the
serial monitor that includes sensor =, the value of our sensor, a tab,
the text output =, and the mapped value. Here’s an example of a line
of output this code will display in the serial monitor:

serial monitor output

Sending Words to the Serial Monitor: Strings

Look at the first Serial.print() line, and you see words and quota-
tion marks around them. In order to send words to your serial moni-
tor, you use something called a string.

Analog Values 273

 Serial.print("sensor = ");

a string

first Serial.print() line from the loop() code

A string is a representation of text in a programming language.
Any letters, numbers, or other alphanumeric characters (including
spaces and punctuation marks) are represented by strings in your
code.

Why do you need strings? Computers normally only work with the
value of numbers. Sometimes you need to use text in your code, to
pass along textual information or to give context to other data. We
will show you how this works as we look more closely at our code in
the next couple of pages.

How do you use strings in your code? You place quotation marks
around a string to identify it. The quotation marks enclose the
full group of characters, including all of the letters, spaces, and
punctuation.

Note Text is represented by strings in your code. Any alpha
numeric characters, including spaces and punctuation marks, are
represented by strings.

Printing to the Serial Monitor
Now we’ll take a closer look at how each line of code prints to the
serial monitor. You know that any characters inside quotation marks
is a string and will be represented as text. You also see your vari-
ables referenced in the code. Let’s look at how these work together
with Serial.print().

Learn Electronics with Arduino274

Note Everything inside the quotation marks, including spaces and
punctuation, will be printed to the serial monitor.

 Serial.print("sensor = ");
 Serial.print(sensorValue);
 Serial.print("\t output = ");
 Serial.println(outputValue);

code from loop() for printing to our computer

first line
second line
third line
fourth line

The first line of the code prints the string "sensor = " (including
the spaces before and after the equals sign).

The second line of Serial.print() will print the value of the vari-
able sensorValue, which is a number. Without quotation marks, the
Arduino will print the numeric value stored in the variable, rather
than the name of the variable.

The third line of the serial loop() code uses quotation marks
again, so you know that you are going to print a string. However,
you also have a new symbol: what does that “\t” mean? The \t tells
the Arduino serial monitor to include a tab—a set of spaces—in your
printed output.

The fourth line prints the value of your outputValue variable. But
instead of Serial.print(), you use Serial.println(), which will print a
line break.

Remember, the values for sensorValue and outputValue you see in
your serial monitor will change as you turn your potentiometer.

Analog Values 275

first line of code prints
the string sensor =

third line of code prints a string
that includes a tab and the
text output =

second line of code prints the
value of the variable sensorValue

fourth line of code prints the
value of the variable outputValue
and sets a line break

The final line of serial code uses Serial.println() rather than
Serial.print(). You saw that Serial.println() automatically adds
a line break; how does this affect the way your code appears in the
serial monitor?

final Serial.println() line from loop() code

Serial.println(outputValue);

The line break means that the next time you print something to
the serial monitor (including the next time through your loop() code),
the printed serial information will appear on a new line.

The only difference between Serial.print() and Serial.println()
is that line break, which can make it easier to read the information in
the serial monitor.

Note Serial.println() includes a line break, which makes the
serial information easy to read.

And because this code is in loop(), the lines will appear over and
over again. The values of the variables will change if you turn the
potentiometer.

Learn Electronics with Arduino276

This is how all four lines
of code will appear in

the serial monitor.

What do those values mean and how do they relate to the scales
of numbers we looked at earlier? sensor is the value derived from
reading the voltage (0–5) on Pin A0 and setting it to a range from 0
to 1023 with the analogRead() function. output is the value of sensor
mapped to a range from 0 to 255 by the map() function to be used
by Pin 9.

The Final loop() Code Line: delay()
The final step is to wait a short amount of time (2 milliseconds)
before your next reading. This is accomplished with a single line
of code that includes the delay() function you’ve seen in previous
chapters.

delay(2);

2 millisecond delay

This delay pauses the program for just a moment so that there is
enough time to take another sensor reading. There is a limit to how
many accurate sensor readings can be taken every second, so the
delay helps to space out your sensor readings just long enough to
maintain good readings.

Note A short delay at the end of the sketch keeps your code run-
ning smoothly and your sensor readings accurate.

Analog Values 277

LEA7_AnalogInOutSerial Summary
As you’ve seen, the loop() code reads an analog value from an ana-
log input pin, scales that value down to a smaller number, writes
the analog value out to a PWM pin, and prints the results from all of
those steps to your serial monitor so that you can see a readout of
how the value changes.

The analog output value—which can be any number between 0V
(off) and 5V (fully on)—changes the brightness of your LED. At an
intermediate point such as 3.5V, the LED will be less bright than at
5V. What else can you modulate in this way? Next you’ll hook up the
speaker and change the notes that come out in a more dynamic
way than you did in Chapter 5.

QUESTIONS?
Q: Are there other functions using Serial besides Serial.begin(),
Serial.print(), and Serial.println()?

A: Yes, there are quite a few, including Serial.write() and
Serial.read(), which are also used to communicate with your
computer.

Q: Why do we bother using the special character \t to create a tab?
Are there other special characters I need to know?

A: Using \t makes the output in the serial monitor much easier
to read, and that’s the only reason we use it. There are many
special characters; one that can sometimes be useful is \n, which
creates a new line. This formats the text in a similar way to using
Serial.println()—it adds a line break.

Q: I’ve heard of strings before; they are a way of describing text in
other programming languages, right?

A: Yes, alphanumeric characters, including spaces and punctuation,
are called strings in many programming languages.

Learn Electronics with Arduino278

THINK ABOUT IT…
What other information might you want to send from your Arduino to
your computer to help you in debugging your projects?

We have sent analog sensor readings in the past, but you can also
print strings (to check if something happens, like a button press) or
digital readings.

You’ve seen how your potentiometer can give you a range of val-
ues when hooked up to an analog input, and you know how to map
those values in your sketch to get values you can use with a PWM
output pin. Now let’s add a speaker to your circuit to control tones
with analog values.

Adding the Speaker
You’re going to keep all the components that are currently in your
circuit and add a speaker (Figure 7.26). Both the LED and the
speaker will use the values produced by turning the potentiometer
to control their behavior.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

5V
GND

A0

PWM 9

PWM 11

schematic for the circuit with speaker,
LED and potentiometer

the circuit with a potentiometer controls the
brightness of LED and note playing

in the speaker

Figure 7.26: Adding the speaker to our circuit

Analog Values 279

Part to add

1 8-ohm speaker
Connect one end of the speaker to Pin 11 and the other to ground.

Remember, the speaker doesn’t have any orientation (Figure 7.27).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

Lcircuit with speaker added

detail one end of speaker attached to
pin 11, the other to the ground bus on
the breadboard

Figure 7.27: Attaching the speaker to the potentiometer circuit

Once you’ve added the speaker to the circuit, attach your com-
puter to the Arduino and open up the LEA7_AnalogInOutSerial
sketch. You will be adjusting it.

Updating Your Code
Save your sketch as LEA7_VariableResistorTone. You have to add
two lines of code to use your speaker: in the initialization section, a
variable to hold the value of the pin attached to the speaker, and in
the loop() section, a call to the tone() function. You’ll also comment
each line to explain what it does.

Learn Electronics with Arduino280

// Analog input pin that the potentiometer is attached to
const int analogInPin = A0;
// Analog output pin that the LED is attached to
const int analogOutPin = 9;
// Analog output pin that the speaker is attached to
const int speakerOutPin = 11;

int sensorValue = 0; // value read from the pot
int outputValue = 0; // value output to the PWM (analog out)

void setup() {
 // initialize serial communications at 9600 bps:
 Serial.begin(9600);
}
void loop() {
 // read the analog in value:
 sensorValue = analogRead(analogInPin);
 // map it to the range of the analog out:
 outputValue = map(sensorValue, 0, 1024, 0, 255);
 // change the analog out value:
 analogWrite(analogOutPin, outputValue);
 //call to the tone function
 tone(speakerOutPin, sensorValue);
 // print the results to the serial monitor:
 Serial.print("sensor = ");
 Serial.print(sensorValue);
 Serial.print("\t output = ");
 Serial.println(outputValue);

 delay(2);
}

calls the tone() function

variable to hold the pin
attached to the speaker

LEA7_VariableResistorTone
Once you have added those lines of code (initialized the variable to
hold the speaker pin, added a call to the tone() function, and com-
mented each line), attach your computer to the Arduino. Verify and
then upload your sketch.

Note again that you are using the potentiometer to set the pitch
of the audio coming out of your speaker (Figure 7.28). As you turn it,
the pitch changes, getting higher as the LED gets brighter and lower
as the LED dims.

Analog Values 281

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC
L

Figure 7.28: Turning the potentiometer changes the pitch.

Before we move on to replacing the potentiometer with a photo-
resistor to build the theremin, let’s take a closer look at the call to the
tone() function.

 tone(speakerOutPin, sensorValue);

You may remember from Chapter 6 (“Switches, LEDs, and More”)
when you used the tone() function that it takes two arguments: the
pin the speaker is attached to—in this case, the variable speakerOutPin
(set to Pin 11)—and the frequency of the tone to be played, here set
to the variable sensorValue, which is the value derived from reading
the potentiometer on Pin A0. You don’t need to map this value to the

Learn Electronics with Arduino282

smaller scale, since the range of frequencies accepted by the tone()
function is much wider than 0–255.

Now that you’ve built your circuit with the potentiometer and the
speaker, you will swap out the potentiometer for a photoresistor to
create your theremin.

Adding the Photoresistor
Place the photoresistor in the breadboard so that one end is in
the same row of tie points as the jumper from Analog Pin A0 (Fig-
ure 7.29). The other end should be in the row of tie points below that.
The photoresistor doesn’t have an orientation, so don’t worry about
placing it in the breadboard backward.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

detail of one lead of the photocell
in the same row of tie points as a
jumper from analog pin A0

jumper in
pin A0

Figure 7.29: Adding the photoresistor to the circuit

Note Photoresistors don’t have an orientation and can’t be
placed backward in your circuit.

Next, add a jumper that connects the other end of the photore-
sistor to the power bus (Figure 7.30).

Analog Values 283

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

detail of one lead of the
photocell attached to the
power bus with a jumper

Figure 7.30: Adding the jumper wire to power

Now add the 10 kΩ resistor to the same row of tie points as the
jumper to Pin A0 and one end of the photoresistor (Figure 7.31). The
other end of the 10 kΩ resistor is jumped to the ground bus.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

one end of 10K Ohm resistor
connects to one end of photocell
and analog pin A0, while the
other end connects to ground bus
through jumper

Figure 7.31: 10 kΩ resistor added to circuit

You have now completed the circuit. Attach your computer to the
Arduino through the USB cable and see what happens (Figure 7.32).

Learn Electronics with Arduino284

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP
.ARDUINO.CC

L

Figure 7.32: Testing the completed circuit

VOLTAGE DIVIDER
The arrangement of the photoresistor with the resistor in series is an
example of a very common circuit called a voltage divider. Voltage
dividers are helpful when using some sensors, like the photoresistor,
but they won’t be required for all circuits. To understand how the
voltage divider functions, think of it as changing a large voltage into
a smaller one.

Why didn’t you need another resistor when you used the potentiom-
eter in your circuit? It contains a resistor with a wiper, which divides
the resistor in half (see Figure 7.33). Moving the wiper adjusts the
ratio of resistance of the two halves.

Analog Values 285

the wiper changes
the resistance
between the sides

inside the potentiometer

Figure 7.33: X-ray of potentiometer

Playing the Theremin
You can play your light theremin by moving your hand closer to
and farther away from the photoresistor. Changing the amount of
light that falls on the photoresistor changes the resistance. Move
your hand up and down to hear the eerie tones changing pitch
(Figure 7.34).

You might try shining a flashlight on the photoresistor (Fig-
ure 7.35); the pitch should jump up as you reach the highest
light level.

Learn Electronics with Arduino286

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

wave your hand over the photocell to
alter the tones

Figure 7.34: The pitch changes as the photoresistor is exposed to different
amounts of light.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Figure 7.35: Shining a flashlight on the photoresistor

Analog Values 287

Why Didn’t the Code Change?
You didn’t need to change the code when you replaced the poten-
tiometer with the photocell. How can this be? As described earlier,
the photoresistor works on the same basic principle as the poten-
tiometer. Both types of variable resistors change the values of the
resistance in the circuit, which, as you know from Ohm’s law, alters
the value of the voltage (and the current as well) on the Arduino.
The code you’ve written for your light theremin will work with a
potentiometer, a photoresistor, or any other variable resistors you
want to use.

Reading the Serial Output
The serial window displays the values sensed by your photoresistor,
but what do these numbers mean? More light shining on the photo-
resistor creates a lower resistance and consequently a higher sen-
sor value (Figure 7.36).

sensor value = 852
sensor value = 852
sensor value = 852
sensor value = 852
sensor value = 852
sensor value = 852
sensor value = 852
sensor value = 852

output value = 212
output value = 212
output value = 212
output value = 212
output value = 212
output value = 212
output value = 212
output value = 212M

A
D

E
 IN

 ITA
LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

higher number means less resistance

Figure 7.36: More light means a lower resistance value.

If the photoresistor detects less light, the resistance value of the
sensor is higher, and the number in the serial monitor will be lower
(Figure 7.37).

Learn Electronics with Arduino288

sensor value = 200
sensor value = 200
sensor value = 200
sensor value = 200
sensor value = 200
sensor value = 200
sensor value = 200
sensor value = 200

output value = 50
output value = 50
output value = 50
output value = 50
output value = 50
output value = 50
output value = 50
output value = 50M

A
D

E
 IN

 ITA
LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

lower number means more resistance

Figure 7.37: Less light means a higher resistance value.

It’s good practice to get used to reviewing the information
displayed in the serial monitor. You may need it to troubleshoot
problems.

Summary
In this chapter, you learned how to attach a potentiometer and a
photoresistor to the analog input pins in the Arduino to get a range
of values to use in your sketches. You learned what PWM means
and how the Arduino uses the PWM pins with analogWrite() to sim-
ulate an analog output. You now know how to map values from the
range you receive from your inputs to a range that is appropriate for
the output you are using. And you learned to use the serial monitor
in the Arduino IDE to read values from inputs. In the next chapter,
you’ll build on this knowledge by creating a circuit that turns motors.
Download the code for LEA7_VariableResistorTone here: github.com/
arduinotogo/LEA/blob/master/LEA7_VariableResistorTone.ino.

http://github.com/arduinotogo/LEA/blob/master/LEA7_VariableResistorTone.ino

In this chapter, you’ll add motion to your Arduino proj-
ects. You will be using servo motors, as shown in

Figure 8.1.

Figure 8.1: Hobby servo motors

Servo Motors 8

Learn Electronics with Arduino290

Servo motors are a type of motor that can be easily programmed
to rotate to a precise position. A servo motor contains a set of gears
and a control mechanism that rotates a shaft a specified number
of degrees. Because servos are relatively easy to control, they are a
good introduction to using motors in your projects. Although there
are many types of servos, the ones that we recommend you use can
rotate between 0 and 180 degrees.

First, you’ll be turning your servo continuously with an exam-
ple sketch from the Arduino IDE. Then, you’ll control a servo with a

180 degrees
360 degrees

90 degrees

Figure 8.2: Diagram of degrees of rotation

Servo Motors 291

potentiometer. Finally, you’ll add a second servo to the circuit and
adapt a sketch so that the movement of both servos is controlled by
turning the potentiometer.

We’ll also cover some programming concepts that you haven’t
encountered before, including for loops and custom functions.

The type of servo motors you’ll be working with are called posi-
tional rotation servos. They are limited to 180 degrees, or one half
of a full rotation of movement; degrees of rotation are shown in Fig-
ure 8.2 (previous page). They are accurate to any degree within that
range, meaning if you need the shaft of your motor to point to an
exact spot, they are a great fit.

Servo motors are used in a wide variety of applications, including
hobby model airplanes, robotics, and art projects of all shapes and sizes.

Waving the Flags
Figure 8.3 shows a drawing of the first project you’re going to build.
We’ll review a bit about analog data, look more closely at servos,
and then get started building.

Analog Data Review
You learned in the previous chapter that analog data can refer to
any information that has more than the two possible values that
digital information can hold (described alternately as 1 or 0, true or
false, HIGH or LOW). In your Arduino sketches, you saw that the num-
ber of possible values was often mapped to a particular range—
for inputs, a value between 0 and 1023, and for outputs, a value
between 0 and 255. Having a wider range of values allows you to
do more than just turn your components on or off.

Servo motors use precise positioning. You’ll use analog data in
order to set the direction the shaft of your motor is facing in the
projects you build in this chapter.

Learn Electronics with Arduino292

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Figure 8.3: The servo will turn and wave the flag.

Servos Up Close
As we have said, many types of servo motors are available. We
recommend that you use a motor with a range of 180 degrees that
runs on 4.8V to 6V. This type of standard servo is commonly avail-
able from many online vendors or from hobby shops or stores that
sell electronic components.

Parts of a Servo
The mechanisms that turn the servo (motor, gears, and circuit) are
enclosed in a case. The spline is the part of the movable shaft that
extends through the case. The horn, or arm, attaches to the spline. A
screw holds the horn in place on the spline. The packet of mounting
materials that comes with your servo will generally have a variety of
horns that you can attach so that you can switch them depending

Servo Motors 293

on the nature of your project, as well as some screws and other fas-
teners. The servos are designed to make it easy to unscrew a horn
and replace it with another one. Servos also generally have mount-
ing flanges on the front and back, making the servo easy to attach
to your projects.

ONLINE VENDORS
Online vendors include the following:

adafruit.com
sparkfun.com
makershed.com
microcenter.com
servocity.com

When you purchase a standard servo motor, you will receive the motor
and a package that contains mounting hardware, as shown here:

A cable is connected to the front of the case near the bottom.
This has three color-coded wires; the black wire will be attached to
ground, the red wire will be attached to power, and the third wire,
sometimes yellow, sometimes blue, sometimes white, is the control
wire. You will be connecting the control wire to a pin on the Arduino.
The servo has a plug, or connector, at the end of the cable to attach
it to a circuit. Figure 8.4 shows a servo with and without a horn
attached.

http://adafruit.com
http://sparkfun.com
http://makershed.com
http://microcenter.com
http://servocity.com

Learn Electronics with Arduino294

splinemounting
flange

cable for
power & control

connector
to plug into
 breadboard

mounting
flange

horn
can be removed

and replaced screw holds
horn in place

case contains motor,
gears and circuit

Figure 8.4: Servos annotated, one with the horn and one with the horn detached

The different styles of horns that come with your servo allow
you to attach the correct horn for the project you are building
(Figure 8.5).

Figure 8.5: Some servo horns

Servo Motors 295

QUESTIONS?
Q: Why are we starting with servo motors rather than another type
of motor?

A: We are starting with servo motors because they are easy to con-
trol and wire.

Q: Will I need any other type of motors for my projects?

A: Yes, though servos are useful, they will not work for every project.
Sometimes it is appropriate to use a DC or a stepper motor because
of power requirements, or because of the particular task that they
are to perform. They are attached to the circuit and programmed
differently, which we will not be covering in this book.

Q: My servo wires don’t match the colors you mentioned. Which
wires go to power and ground?

A: On some servos, the ground wire is brown; generally power is
red on most hobby servo motors. Look at the front of the servo to
see how the wires are coming out on the cable. Generally the ground
wire is on the right, the power wire in the middle, and the control wire
on the left.

Building the Servo Circuit
Step by Step
You’ll need these parts:

▨▨ Standard servo motor

▨▨ Breadboard

▨▨ Jumper wires

▨▨ Wooden coffee stirrer or strip of cardboard

Learn Electronics with Arduino296

▨▨ Tape

▨▨ Colored paper

▨▨ Arduino Uno

▨▨ USB A-B cable

▨▨ Computer with the Arduino IDE installed

 Figure 8.6 shows the schematic and the drawing of the first cir-
cuit you are going to build. As usual, the power and ground buses on
the breadboard are attached to 5V and GND on the Arduino. You
can see that the servo has three wires: one attached to power, one
to ground, and one to a pin on the Arduino.

+

-

control

5V
GND

9

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

Lservo symbol

servo control wire
attached to pin 9servo attached

to power

servo attached
to ground

Figure 8.6: Schematic and drawing of our first servo circuit

There are a few things you should know about the servo that will
make it easy to set up.

Preparing the Servo
You’ve seen that the servo comes with a packet of different horns.
You might want to swap out the horn that is attached to your servo
when you purchase it. Use a small screwdriver to remove the screw
attaching the horn and replace it with another, as shown in Fig-
ure 8.7. We are using the circular horn in our examples.

Servo Motors 297

detaching horn
with a screwdriver

the horn can be detached and
replaced with another that is a

better fit for your project

Figure 8.7: Removing the horn

We have made a flag with a coffee stirrer and a piece of colored
paper. A strip of cardboard with a piece of colored foam would also
work. Make a flag with whatever materials you have lying around
and attach it to your horn with wire, as shown in Figure 8.8.

detail of jumper wires pushed through the holes
in the horn

Figure 8.8: Attaching the flag to the servo horn

Learn Electronics with Arduino298

Before you attach your servo to the breadboard, you will have to
add jumper wires to the plug/connector on the servo. As you know,
there is a control wire, a wire that goes to power, and one that
goes to ground. Follow the color conventions (red wire connected
to power, black to ground) as usual. If you have a jumper that’s the
same color as your control wire, use that, or use a color that is dis-
tinctive from the red and black wires. In our example (Figure 8.9),
the control wire is yellow, but sometimes that wire will be another
color, such as white.

cable

jumpers

plug

Figure 8.9: Servo connector up close

Attaching the Servo
Attach jumpers from GND on the Arduino to the ground bus on the
breadboard and from 5V on the Arduino to the power bus.

Servo Motors 299

Now attach your servo to the breadboard. Attach the red power
jumper to the power bus, and the black ground jumper to the ground
bus. Then place the control jumper wire in its own row of tie points
(Figure 8.10).

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L
jumper from ground cable
to ground bus

detail attaching jumper from
control cable in row of tie points

jumper from power cable
to power bus

Figure 8.10: Attaching the servo to the breadboard

Next, attach a jumper from Pin 9 to the same row of tie points
as the jumper from the control cable, as seen in Figure 8.11. You are
attaching the servo to Pin 9 because that is the pin it’s attached to
in the sketch you will be downloading. It could be attached to any of
the digital pins, 2 through 13.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

jumper connects Pin 9 on
Arduino to control cable on servo

Figure 8.11: Attach the control wire of the servo through a jumper to Pin 9 on the
Arduino.

Learn Electronics with Arduino300

You’re now ready to download the sketch from the Arduino IDE.

Attach Your Computer and Download the
Sweep Sketch
Now that you have completed wiring your circuit, you need to down-
load a sketch to your Arduino in order to run your servo. The Ardu-
ino includes a few sketches about using the servo motor, and for
this first example, you’ll use the Sweep sketch included in the Servo
folder of example sketches (File > Examples > Servo > Sweep).

When you have opened the sketch, save it as LEA8_Sweep. If you
haven’t already done it, attach your computer to your Arduino and
upload the sketch.

Wave the Flag!

You should begin to see the servo motor swing the flag attached to
the horn 180 degrees in one direction, and then reverse directions
and swing back to its starting position (Figure 8.12). It will continue

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Figure 8.12: The flag waves.

Servo Motors 301

to loop these movements one after another for as long as the Ardu-
ino has power. Let’s take a closer look at the code and explain what
each line is doing.

LEA8_Sweep Overview
In our breakdown of some of the sketches in this chapter, we have
removed the comments section for readability. Figure 8.13 shows a
quick look at the sketch.

comments

initialization

setup

loop

Figure 8.13: LEA8_Sweep overview

Learn Electronics with Arduino302

Initialization
The first thing you see in the initialization section is a line of code
that is going to add functionality to your Arduino. The include
statement tells your Arduino to load a library, which will extend
the capabilities of your Arduino. Rather than having to write all the
code yourself, including libraries gives you access to extra functions
that other people have written that expand the possibilities of the
Arduino.

How do you add a library? We use an include statement, which
starts with a # followed by the word include. An open angle bracket
follows, with the name of the library, in this case Servo, and the
extension .h next. A closing angle bracket completes the statement,
and there is no semicolon in this instance.

#include <Servo.h>
include statement loads the Servo library

name of library in angle brackets

no semi-colon
include preceded by hashtag

Note A library is a set of code that extends the functionality of an
Arduino. The library must also be specifically included in your sketch
in order to use it.

The Arduino IDE has many libraries already loaded, and it also
allows you to load new libraries if you want to have access to them. For
now, we are just concerned with the Servo library and what it does.

If you look at the next line of our initialization section, you see a
new type named Servo. After loading the Servo library, you can cre-
ate a servo object, which has functions that allow it to control servo
motors. This line creates a servo object and stores it in a variable
named myservo.

Servo Motors 303

Servo myservo; // create servo object to control a servo

create servo object store it in a variable

We have not discussed objects before, and an in-depth discus-
sion of objects is beyond the scope of this book. Think of an object as
a template with a set of attached functions and properties—that is,
you can create several different servo objects in your sketch based
on the template. Although each one follows the same basic struc-
ture, you can modify their properties, such as position.

Note An object is a template that includes properties and func-
tions. Each instance of an object can have unique qualities; in this
chapter, you will see more than one servo object.

The last line in our initialization sketch creates a variable named
pos, which is set to 0. This variable will be used to set the position of
the servo. If you change this value and again send it to the servo, the
motor will update with its new position. You will see the code that
changes these values within the loop() code.

int pos = 0; // variable to store the servo position

variable named pos is declared, typed and set to 0, it will hold the position of the servo

Inside setup()
Our setup() section includes just one line in this sketch. attach() is a
new function made available to your Arduino from the Servo library
that allows you to connect the servo object that you named myservo
to a pin on your Arduino. That way, whenever you refer to myservo
you are referencing the pin to which you have attached myservo, and

Learn Electronics with Arduino304

you will be able to control the servo that is attached to that pin. In
this project, the servo motor is attached to Pin 9.

myservo.attach(9); //attaches the servo on pin 9 to the servo object

pin number

servo object attach() function

Inside loop()
This loop() code is a little different than what you have seen in the
past, and will introduce you to our next programming concept: the
for loop. Let’s take a look at the code; then we will break it down.

for (pos = 0; pos <= 180; pos += 1) //goes from 0 degrees to 180 degrees
{ // in steps of 1 degree
 myservo.write(pos); //tell servo to go to position in variable 'pos'
 delay(15); //waits 15ms for the servo to reach the position
}
for (pos = 180; pos >= 0; pos -= 1) //goes from 180 degrees to 0 degrees
{
 myservo.write(pos); //tell servo to go to position in variable 'pos'
 delay(15); //waits 15ms for the servo to reach the position
}

the for loop: code inside of loop()

What’s a for Loop?
There are times when you might want to repeat something a certain
number of times or until a particular condition is met. The for loop
allows you to repeat something a number of times based on some
conditions. In your sketch, you are setting the position of the shaft of
the servo motor with a for loop.

Let’s first take a closer look at an example of a for loop before
you see exactly what it does in your sketch. In the Arduino language,
after the keyword for, the for loop has three parts: the initialization,
the condition or test, and the iterator.

Servo Motors 305

for (initialization condition iterator){
 statements
}

keyword for declare variable

statements to be executed if condition is met

test increment or decrement variable

Here’s how the parentheses and curly braces are used in a for
loop. The parentheses mark off the initialization, condition, and
iterator section. The curly braces mark off the block of code, or the
statements to be executed if the condition is true.

for (initialization condition iterator){
 statements
}

curly braces denote code block

parentheses mark off for loop parts

Now let’s look at an example of a for loop in the syntax of the
Arduino language. This for loop prints integers from 0 to 9 in the
serial monitor.

 for (int i = 0; i < 10; i += 1) {
 Serial.println(i);
 }

keyword for declare variable

statement to be executed if condition is met

test increment or decrement variable

Learn Electronics with Arduino306

THINK ABOUT IT…
 How would this work differently if you put the for loop in setup()?
What about inside loop()?

How Does a for Loop Work?
In what order do the parts of the for loop get executed? Let’s take a
look at Figure 8.14.

initialization

conditionFALSE

TRUE iterate

stop

statements

Figure 8.14: for loop flowchart

Servo Motors 307

The first thing that happens in our for loop is the initialization
(Figure 8.15). You create a temporary variable to count how many
times you execute your for loop. The for loop will happen a certain
number of times.

initialization

Figure 8.15: The initialization is the first step.

How many times will the for loop happen? This depends on the
next part of your for loop: the test, shown in Figure 8.16. If the con-
dition in the test is true, then the statements inside the curly braces
will get executed. Once the test is no longer true, the for loop will
end. We will talk more about the different types of conditions you’ll
create for the test in just a moment.

condition

Figure 8.16: The condition is tested.

If the test evaluates to be true (Figure 8.17), the statements/
instructions get executed. Then the value is iterated. This often
means that you increase the count of your variable by one, but you
can also alter the variable in a number of other ways to continue the
for loop. Once you have iterated your variable, the for loop returns
to the test. If the test continues to be true, the statements inside the
curly brackets get executed again, and the value is iterated.

Learn Electronics with Arduino308

condition

TRUE iterate

statements
Figure 8.17: If the condition is true, execute statements, then iterate.

It is only when the test is false, shown in Figure 8.18, that the for
loop ends.

conditionFALSE

stop

Figure 8.18: The for loop ends when the test evaluates to false.

Let’s look at the cycle again with the code from our example
(Figure 8.19).

Servo Motors 309

initialization

conditionFALSE

TRUE iterate

stop

statements

 int i= 0;

 Serial.println(i);

 i < 10;

 i += 1

Figure 8.19: The for loop flowchart with code

Before we move on, let’s look more closely at the condition, or
test, section of the for loop, which requires discussing the idea of an
operator.

Operators
An operator is a mathematical or logical evaluation of values that
are useful in evaluating the test in the for loop. In basic arithmetic,
addition, subtraction, multiplication, and division are all examples of
operators. There are a few different types of operators.

Comparison Operators
Let’s take a closer look at the test. You see the variable i, then the
symbol < followed by 10. What does this mean? In English, it means

Learn Electronics with Arduino310

is the variable i less than the integer 10? You know that the variable
i was set to 0 in the initialization of the for loop. The symbol < stands
for “is less than”; it checks to see how the value of i compares to
the value of 10. In this context, it is called a comparison operator.
Comparison operators are used in logical statements, like the test
in a for loop, or in a conditional statement, to determine whether a
statement is true or false.

i < 10;

variable comparison operator

variable i is compared to integer 10

Table 8.1 shows the commonly used comparison operators in the
Arduino language.

Table 8.1: Logical comparison operators

COMPARISON
OPERATOR WHAT IT MEANS EXAMPLE

WHAT THE EXAMPLE
MEANS

> Greater than x > 0 x is greater than 0

< Less than x < 10 x is less than 10

>= Greater than or
equal to

x >= 0 x is greater than or
equal to 0

<= Less than or
equal to

x <= 10 x is less than or equal
to 10

== Is equal to x == 10 x is equal to 10

!= Is not equal to x != 10 x is not equal to 10

Compound Operators
While we’re on the topic of operators, you’ll notice that a different
type of operator is used in the iterator section of our for loop. The

Servo Motors 311

variable i is followed by +=, followed by 1. In English, this means you
are adding 1 to the variable value. The symbols += indicate that you
want to add whatever is on the right side to the variable on the left
side. In our example, it means add 1 to the variable i.

i += 1;

variable

compound operator

number to be added

add 1 to variable i

This type of operator is called a compound operator. Com-
pound operators perform a mathematical operation of some kind.
Table 8.2 lists commonly used compound operators in the Arduino
language. In each of the examples in Table 8.2, x initially is set to 10.

Table 8.2: Results of using a compound operator when x initially equals 10

COMPOUND
OPERATOR WHAT IT MEANS EXAMPLE

WHAT THE EXAMPLE
MEANS

++ Add 1 x++ x now equals 11

-- Subtract 1 x-- x now equals 9

+= Add value on right
to value on left

x += 2 x now equals 12

-= Subtract value on
right from value on
left

x -= 2 x now equals 8

*= Multiply value on
left by value on
right

x *= 5 x now equals 50

/= Divide value on left
by value on right

x /= 2 x now equals 5

Learn Electronics with Arduino312

The for Loop in the Sketch
So how can you employ for loops to help you move your servo? Let’s
take a look at the first for loop in our code. Breaking it down, in the
initialization you set the pos variable to 0. The condition checks to see
if the pos variable is less 180, and if so, a 1 is added (iterated) to pos.
You didn’t have to use int here to indicate the type of pos, because
pos was declared in the initialization section.

for (pos = 0; pos <= 180; pos += 1) //goes from 0 degrees to 180 degrees
{ // in steps of 1 degree
 myservo.write(pos); //tell servo to go to position in variable 'pos'
 delay(15); //waits 15ms for the servo to reach the position
}

What instructions are executed each time through the for loop?
As long as the value of i is less than 180, the Arduino will write the
value of pos to the motor, which will move the servo motor to some
position between 0 and 180 degrees. After the Arduino has written
this position, there is a delay of 15 milliseconds.

Since the for loop continues for every value between 0 and 180,
the servo motor will move from 0 degrees until 180 degrees in the
first for loop. This will take a few seconds—there is a very short
pause between each movement—but the motion overall will look rel-
atively smooth. If you remove or adjust the length of the delay, the
smoothness of the movement will change.

Why is the for loop counting between 0 and 180? Because that
represents the range of movement that the shaft in your standard
servo motor can move. Think of this as 0 to 180 degrees.

The second for loop in this sketch functions in much the same
way. Instead of starting at 0, it starts with the pos variable equal to
180. What’s 180? The second loop needs to start with the last posi-
tion of the first loop, which is also the end position of the servo.

Servo Motors 313

for (pos = 180; pos >= 0; pos -= 1) //goes from 180 degrees to 0 degrees
{
 myservo.write(pos); //tell servo to go to position in variable 'pos'
 delay(15); //waits 15ms for the servo to reach the position
}

Besides having a different starting point, this second for loop also
decreases by one through each pass of the for loop. That way, the servo
motor starts at 180 degrees and slowly rotates back to 0 degrees.

Once the second for loop has finished, the full Arduino loop()
function has also finished. The Arduino will then return to the begin-
ning of the loop() and repeat the steps, as you have seen with the
other loop() functions.

QUESTIONS?
Q: for loops are used in other programming languages, right?

A: Yes, for loops are commonly used in many different program-
ming languages. They are often used when something needs to hap-
pen a certain number of times.

Q: Are there other types of loops besides the for loop in the Arduino
programming language?

A: Yes, there are while loops and do loops. Read more about them
here: arduino.cc/en/Reference/While and arduino.cc/en/Reference/
DoWhile.

THINK ABOUT IT…
Now that you know how a servo motor operates, think of some
uses for them. What types of devices have you seen that use servo
motors? What are projects you would like to build that would require
this kind of movement?

http://arduino.cc/en/Reference/While
http://arduino.cc/en/Reference/DoWhile

Learn Electronics with Arduino314

Add Interactivity:
Turn the Flag
You now have a basic understanding of how the servo motor func-
tions with your Arduino code, so let’s try making your servo circuit
interactive. Rather than the Arduino moving the servo at a steady
pace continually, this next sketch uses information from a poten-
tiometer to position the shaft of the servo motor. As you turn the
knob, the shaft of the servo motor will move.

You will use the Knob sketch that is also included in the servo
motor examples in the IDE. Before you upload the sketch, though,
let’s adjust your circuit by adding the potentiometer.

Adding a Potentiometer Step by Step
Adding a potentiometer to the circuit allows you to control how
the flag waves and to set it to a precise position. If you completed
the first circuit with the servo, you can leave the servo control wire
attached to Pin 9 on the Arduino, the power line attached to the
power bus, and the ground wire attached to the ground bus. You will
be adding only the potentiometer to the circuit.

You’ll need these parts:

▨▨ 1 10 K potentiometer

▨▨ Jumper wires

Figure 8.20 shows the finished circuit with the schematic.

Tip As always, make sure you have unplugged the Arduino before
you make any changes to the circuit.

Place the potentiometer in the breadboard, as shown in Figure 8.21.

Servo Motors 315

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

turning the potentiometer controls the position of the flag

potentiometer added at Pin A0

5V
GND

A0

9 +

-

control

Figure 8.20: Circuit with the potentiometer added

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+
RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+
RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

detail of potentiometer in breadboard

placing the potentiometer in the breadboard

Figure 8.21: Adding the potentiometer to the breadboard

Connect one end of the potentiometer to the ground bus with a
jumper. Connect the other end of the potentiometer to the power
bus with a jumper. Connect the middle pin of the potentiometer to
Pin A0, one of the analog input pins (Figure 8.22).

Now that you’ve wired your circuit, it’s time to open the next
sketch in the Arduino IDE. This sketch is located under File > Exam-
ples > Servo > Knob. Once you have opened it, save it as LEA8_Knob.
Hook up your computer to your Arduino. Click Verify to check the
code, and then click Upload to load it to your Arduino.

Learn Electronics with Arduino316

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

detail connecting jumpers to
power bus and ground bus

add jumpers to connect potentiometer
to power and ground buses and to Pin A0

jumper connecting Pin A0 to potentiometer

Figure 8.22: Adding jumpers to the potentiometer

Now when you turn the potentiometer, your flag should turn, too.

How Does the Sketch Change When We
Are Using a Potentiometer?
Let’s take a quick look at the sketch. It is similar to the LEA8_Sweep
sketch—with a couple of important differences that we will look at
closely.

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin

void setup()
{
 myservo.attach(9);
 // attaches the servo on pin 9 to the servo object
}

void loop()
{
 // reads the value of the potentiometer (value between 0 and 1023)
 val = analogRead(potpin);
 // scale it to use it with the servo (value between 0 and 180)
 val = map(val, 0, 1023, 0, 180);
 // sets the servo position according to the scaled value
 myservo.write(val);
 // waits for the servo to get there
 delay(15);
}

initialization

attach servo in setup

read value, map value,
write value to servo in loop

Servo Motors 317

LEA8_Knob Explained
Just like with LEA8_Sweep, this sketch controls the position of the
horn attached to the shaft of the servo motor, depending on what
value the Arduino sends to it. However, this time you have control
over how much it turns, since as you turn the potentiometer, you
change the value that the Arduino receives and sends to the servo.

Initialization
In this servo sketch, as with the previous one, the first thing you see in
the initialization section is the include statement that loads the Servo
library. As you’ve seen, libraries extend the abilities of the Arduino to
perform specific functions or interact with some types of technology
in a streamlined way so that you can write simplified code.

#include <Servo.h>

Looking at the next line of the initialization section, you see that,
as in LEA8_Sweep, you’re creating a new servo object named
myservo. This object will be able to access the functions of the Servo
library to communicate with the servo motor.

Servo myservo; // create servo object to control a servo

create servo object store it in a variable

The initialization section also contains a variable for the ana-
log pin to which your potentiometer is attached. We covered this in
Chapter 7; by connecting the potentiometer to Analog Pin 0 you are
able to take readings between 0 and 1023 instead of the HIGH or LOW
reading you get from a digital pin. Finally, the last line in the initial-
ization sketch creates a variable called val, which you will later use

Learn Electronics with Arduino318

to store the value coming in from the potentiometer and send it out
to the servo.

int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin

variable potpin is set to analog Pin 0

variable val will hold value of potentiometer attached to potpin

The Code in setup()
The setup() section includes only a single line for this sketch. Again,
you use attach() to connect the Arduino to the servo object that you
named myservo to a pin on your Arduino. That way, whenever you
refer to myservo, you are referencing to a particular pin much in the
way that you have seen with digitalWrite() and a pin name. In this
case, your servo should be wired so that it is attached to Pin 9.

myservo.attach(9); //attaches the servo on pin 9 to the servo object

pin number

servo object attach() function

The Code in loop()
The loop() code section looks similar to what you did in Chapter 7.
The first step is to use the analogRead() function to read the value
from the potentiometer on Pin A0 and store it in the variable val.
This will set val to a value between 0 and 1023, which as you know is
the range of possible values from an analog pin.

val = analogRead(potpin);
// reads the value of the potentiometer (value between 0 and 1023)

val holds value that analogRead() function reads from the potentiometer

Servo Motors 319

Next, you use the map() function to adjust the value from your
potentiometer reading to match up with the degrees of motion
for your servo motor. Since your servo motor is able to move 180
degrees, you will scale the value from 0 to 180. That way, when you
send the value to the servo motor, it will already be in a value given
in degrees. This new scaled value is then again saved in your val
variable.

 val = map(val, 0, 1023, 0, 180);
// scale it to use it with the servo (value between 0 and 180)

val is scaled by map() function to a range that can be used by the servo between 0 and 180

The next step is to write out your scaled val variable to the servo
attached to Pin 9 using the write() function of the servo object. It
is worth noting again here that it will not move the servo an addi-
tional val number of degrees, but that it will move to the val number
of degrees from 0. For example, if val is equal to 90, it will always
move the servo shaft to the midpoint.

 // sets the servo position according to the scaled value
 myservo.write(val);

The last line in the loop() code delays the Arduino program for 15
milliseconds. This very short delay time will let the servo move to the
correct position since the movement is not instantaneous. It will also
give the Arduino slightly more time between potentiometer readings
to ensure a more accurate reading overall.

 // waits for the servo to get there
 delay(15);

Learn Electronics with Arduino320

Two Flags Waving: Add a
Second Servo Motor
Let’s add another servo motor to the circuit. You’ll use the informa-
tion from the potentiometer to set the position of both servos. You’re
making a flag-waving signal system.

In the sketch for this project, you’ll learn how to write a custom
function, and you’ll also learn more about using logic in conditional
statements.

If you built the circuit for the LEA8_Knob sketch, this circuit will be
almost the same—the only addition is the second servo motor.

You’ll need the following:

▨▨ Servo motor

▨▨ Jumpers

▨▨ Coffee stirrer or cardboard strip

▨▨ Colored paper

▨▨ Tape

Figure 8.23 shows the schematic for the circuit, as well as a
drawing of the completed project.

5V
GND

A0

9

10

+

-

control

+

-

control

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

schematic for the 2 servo circuit

turning the potentiometer will turn both flags

Figure 8.23: Two-servo circuit and schematic

Servo Motors 321

First attach the wooden stirrer with the
paper flag to the servo horn, as you did
with the first servo motor (Figure 8.24).

Attach the jumpers to the servo
connector (Figure 8.25), matching the
colors for power and ground, and attach
the control wire.

Now attach the jumpers to the bread-
board, as shown in Figure 8.26. As you did
before, connect the jumper connected to the
power cable to the power bus and the jumper
connected to the ground cable to the ground
bus. The control wire connects to a row of tie
points. Finally, connect Pin 10 to the same
row of tie points as the jumper from the con-
trol cable.

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

detail attaching the second servo

control wire attached
to pin 10

power wire attached
to power bus

ground wire attached
to ground bus

adding the second servo

Figure 8.26: Attaching the second servo

Figure 8.24: Attach the
flag to the servo horn.

cable

jumpers

plug

Figure 8.25: Attach
jumpers to the servo
connector.

Learn Electronics with Arduino322

Before you attach the Arduino to your computer, you must make
some adjustments to the code. Let’s look at the sketch.

LEA8_2_servos, First Look
Save LEA8_Knob as LEA8_2_servos. You will be adjusting this code.
In the LEA8_2_servos sketch, the initialization section is similar to
your other sketches, as is setup(), but you’ll notice something new in
loop(), which we will explain. Figure 8.27 is a first look at the code.

initialization

setup

loop

custom function turnServos

Figure 8.27: The LEA8_2_servos sketch annotated

Servo Motors 323

Some of the comments have been moved in the code break-
downs for legibility.

Initialization
As we’ve said, the initialization section is quite similar to that section
in LEA8_Knob. There are a couple of additions: you’re including a
variable for the second servo object, and you’re storing the pin num-
bers that the servos are attached to in variables. You’re also adding
a variable (pval) to store the previous value.

#include <Servo.h>

Servo myservo1; // create servo object to control a servo
Servo myservo2; //add another servo object for 2nd motor

int potpin = 0; // analog pin used to connect the potentiometer
int val = 0; // variable to read the value from the analog pin
int pval = 0; // keeping track of the previous value

int servopin1 = 9;
int servopin2 = 10;

variable for 2nd servo

variables for servo pin numbers

variable to keep track of previous value

initialization in LEA8_2_servos sketch

The setup() Function in LEA8_2_servos
The setup() function has a couple of changes from the LEA8_Knob
sketch. You’re attaching the servo objects to the pins, using the
variables servopin1 and servopin2. Then you’re using the write()
function of the Servo library to move the first servo to midpoint,
followed by moving the second servo to midpoint using the write()
function again.

Learn Electronics with Arduino324

void setup(){
 myservo1.attach(servopin1);
 // attaches the servo on pin 9 to the servo object
 myservo2.attach(servopin2);
 //attach 2nd servo
 myservo1.write(90);
 //move 1st servo to midpoint
 myservo2.write(90);
 //move 2nd servo to midpoint
}

code in setup()

attaches servo on pin 10 to servo object

attaches servo on pin 9 to servo object

set both servos to midpoint

Overview of the loop() Code
In the loop() code, the first line saves the previous value read from
the potentiometer into the variable pval. You then read the current
value on the potentiometer and map it. Finally, you use a conditional
statement to check to see if val is not equal to pval—in other words,
check to see if there has been a change in the pin reading. If there
has been a change, you call the turnServos() function.

You’ll notice a few things you haven’t seen before in this code.
Let’s break it down.

void loop(){
 pval = val;
 //set previous value from potentiometer reading to current reading
 val = analogRead(potpin);
 //check value from potentiometer on pin A0
 val = map(val, 0, 1023, 0, 180);
 //map value to range used by servo
 if (val!=pval){
 // if there has been a change, call turnServos function
 turnServos();
 }
}

loop() code

store previous value

check if value of potentiometer has changed

if changed, call function

We use a conditional statement to compare the previous value
read from the potentiometer to the new value read. This conditional
uses a comparison operator: the symbols !=. This operator is used

Servo Motors 325

to compare two values, and if one value is not equal to the other, it
evaluates to true. (Table 8.1 covered these comparison operators
and what each means.)

 if (val != pval){
 // if there has been a change, call turnServos function
 turnServos();
 }

comparison operator != evaluates to true if val is not equal to pval

call to turnServos() function

If there has been a change, the turnServos() function is called.
turnServos() is a custom function, the topic of our next section.

Creating a Custom Function
We’ve introduced another new code concept in the updated servo
code: custom functions. Why would you want to make your own
functions? First let’s quickly review what a function is.

Note A function is a block of code that performs a specific action
or series of actions that can be used over and over.

You have used many Arduino functions: delay(), digitalWrite(),
and analogRead() are all functions used to perform some specific
task with the Uno. You have written most of your code inside the
setup() and loop() functions for your sketches.

What is the advantage to writing your own functions? You can
group together actions outside of your loop() code and call this new
function only when you want those actions to happen. It makes your
code more legible and easier to understand.

What does the line of code turnServos(); do? It’s the call to the
custom function you wrote. As you’ve seen, it will be called if there
has been a change to the variable val—in other words, if someone

Learn Electronics with Arduino326

has turned the potentiometer. turnServos() will only happen when
the value of the potentiometer has been changed and not every
time the Arduino goes through the loop() function.

What does your turnServos() function look like? First, it starts with
void. This is followed by turnServos, which is the name of the function,
followed by parentheses and an opening curly brace. The instruc-
tions to be executed when turnServos() gets called follow, and the
last line contains only a closing curly brace.

void turnServos() {
 if (val > 0 && val <= 45) { //if val is between 0 and 45
 myservo1.write(45); //set position of first servo
 myservo2.write(135); //set position of second servo
 }
 if (val > 45 && val <= 90) { //if val is between 45 and 90
 myservo1.write(0); //set position of servos
 myservo2.write(180);
 }
 if (val > 90 && val <= 135) { //if val is between 90 and 135
 myservo1.write(180); //set position of servos
 myservo2.write(0);
 }

 if (val > 135 && val <= 180) { //if val is between 135 and 180
 myservo1.write(45); //set position of servos
 myservo2.write(45);
 }
 delay(15); //short pause for servo to move
}

turnServos() function declaration

instructions

name

Creating a custom function is called declaring a function, and it
follows a few rules in the Arduino programming language.

void turnServos() {

starts with void

name of function
start curly brace

parentheses

Servo Motors 327

Note There are a couple of simple rules for naming functions.
Functions must start with a letter and can’t be named the same as
an Arduino reserved word. And it is best to make the name of your
function clearly indicate what exactly it is going to do.

Note Why does the function start with void? It has to do with
how some functions operate; in some functions you might see int
or string there, for example. It’s beyond the scope of this book to
explore this concept, but here’s an explanation from the Arduino site:
arduino.cc/en/Reference/FunctionDeclaration.

Next you see a set of parentheses. Some functions have param-
eters or information that will be passed into the function as argu-
ments when the function is called. These are placed inside the
parentheses. Since turnServos() doesn’t have any parameters, the
parentheses are empty. The parentheses are followed by an open-
ing curly brace, the punctuation you have used before to mark out a
block of code.

This discussion about function declaration must seem familiar,
because you have seen some of these conventions used before.
Where? In setup() and loop()! The difference is that now you are
creating and naming the function yourself.

You can write your own functions at any time, and your functions
can incorporate any Arduino-compatible code.

Calling a Custom Function
When you want to invoke a function, you call that function. The call
to your custom function is inside loop(). The call is simply the name
of the function followed by parentheses and a semicolon.

http://arduino.cc/en/Reference/FunctionDeclaration

Learn Electronics with Arduino328

 turnServos();

call to turnServos() function

You’ve been making calls to the built-in Arduino functions since
you uploaded your first sketch. The functions you’ve used have
usually had parameters, so you passed in arguments inside the
parentheses. When you called the delay() function, for example, you
passed in the amount of time in milliseconds that you wanted the
delay to last.

 delay(15);

call to the delay() function

Custom functions can be quite powerful by letting you extend
the functionality of your sketches. Our discussion here is limited—it
is meant to give you an introduction to the concept and the general
rules for creating them. You will undoubtedly explore more on your
own.

Inside turnServos()
You know that turnServos() is going to turn your motors, but how?
It is positioning both flags in a pattern based on how far the poten-
tiometer is turned; sometimes they are opposite each other, and
sometimes they are parallel. The code consists of a series of condi-
tional statements. Let’s look closely at the first one.

Servo Motors 329

In this conditional, it is testing for two conditions. Is val greater
than 0 and is val also less than or equal to 45? The value of val
must be a number between 0 and 45 for the instructions inside the
if statement to be executed.

 if (val > 0 && val <= 45) { //if val is between 0 and 45
 myservo1.write(45); //set position of first servo
 myservo2.write(135); //set position of second servo
 }

boolean operator
first condition second condition

if first condition and second condition are true, execute instructions

The symbols && are an example of a Boolean operator. In this
case, both the first and second conditions must be true in order for
the servo positions to be set.

Boolean Operators

Boolean operators allow you to make complicated evaluations when
trying to decide what actions should be taken. Table 8.3 lists the
Boolean operators and what they mean and includes an example
for each.

Table 8.3: Boolean operators

BOOLEAN
OPERATOR

WHAT IT
MEANS EXAMPLE

WHAT THE
EXAMPLE MEANS

&& logical and if (a>0 && b<10) Evaluates to true if both
conditions are true

|| logical or if (a>0 || b<10) Evaluates to true if
either condition is true

! not if (!a) Evaluates to true if a is
false

Learn Electronics with Arduino330

THINK ABOUT IT…
Although you use && only in this sketch, can you think of how you
might use the other operators to change the execution/logic of your
program?

The turnServo() Function and Boolean Operators

Let’s take a look at the first if statement in turnServos() again. What
happens if val is a number between 0 and 45? The first servo motor
turns to a position of 45 degrees and the second servo motor turns
to a position of 135 degrees. You know this because both of the
servo object write() functions will be called and move myservo1 and
myservo2 to the desired position.

 if (val > 0 && val <= 45) { //if val is between 0 and 45
 myservo1.write(45); //set position of first servo
 myservo2.write(135); //set position of second servo
 }

boolean operator
first condition second condition

if first condition and second condition are true, execute instructions

The three other conditional statements in turnServos() work in a
similar manner—testing the value of val (how far the potentiometer
has been turned), and whether it is between a particular range of
numbers, the Arduino will then turn each of the servo motors to their
new position specified by the turnServos() function.

Now that you’ve written the sketch, make sure you’ve saved it
(as LEA8_2_servos) if you haven’t already done so. Click the Verify
button to check for errors, and if it is error free, click the Upload but-
ton. Your flags will change positions as you turn the potentiometer
(Figure 8.28).

Servo Motors 331

M
A

D
E

 IN
 ITA

LY

A
R

D
U

IN
OP
O
W
E
R

A
N
A
L
O
G

I
N

D
I
G
I
T
A
L

(
P
W
M
~
)

U
N

O
-

+

RESET
IOREF

3.3V
5V

GND

Vin

A0
A1
A2
A3
A4
A5

O
N

TXRX AREF

GND
13
 12

 ~11
 ~10
 ~9
 8

 7
 ~6
 ~5
 4

 2
 1
0

 ~3

TX

RX

RESET

ICSP

.ARDUINO.CC

L

Figure 8.28: Waving two flags

QUESTIONS?
Q: When should I write my own custom functions?

A: If you know there is a block of code you will need often in a sketch,
or if you find yourself repeating the same lines, it may help to write a
custom function to shorten your code and make it easier to read. We
could have used a custom function earlier in our first SOS sketch. In
fact, we could have used for loops there as well.

Q: How do I know which Boolean or comparison operator to use?

A: As with most programming concepts covered in this book, it will
be easiest to state in plain language what you are trying to accom-
plish in order to decide how the logic will be structured in your sketch.
For example, if you want conditions to be true (button 1 is pressed
and an LED is lit) to make something happen, you would use and, or
the && sign, as you did in this sketch.

Q: How many is too many conditionals?

A: We selected four key positions in this sketch in order to create a
choreography of sorts for the flags. You can use as many conditionals
as you need to get the kind of behavior that your project requires.

Learn Electronics with Arduino332

Summary
Our primary focus in this chapter has been to show you how to use
servo motors. Servo motors are versatile for many Arduino projects,
since a servo can easily be run automatically, as in the Sweep sketch,
or can be controlled by a sensor or switch, as in the Knob sketch.

We discussed a number of important programming concepts in
this chapter. You learned about libraries, and you used the Servo
library to give your Arduino access to a number of servo functions
that make it easier to control the servo motors.

We also showed you how to use for loops to set your servos
to different positions. And you learned about using comparison,
compound, and Boolean operators in your code. You’ll find the
LEA8_2_servos sketch here: github.com/arduinotogo/LEA/blob/
master/LEA8_2_servos.ino.

http://github.com/arduinotogo/LEA/blob/master/LEA8_2_servos.ino

Now that you’ve completed the projects in this book,
what’s next? This chapter will be a brief overview of

tips for project management, a few project ideas, and a
quick look at some of the other Arduino boards available
and what they can do.

Building Your
Projects 9

Learn Electronics with Arduino334

Project Management
In this book, we gave you step-by-step instructions on how to work
with the Arduino. How do you start your own projects? The first step
should be research. Look around online; many of the vendors we’ve
mentioned have websites that are chock-full of tutorials and project
ideas. Also, browsing through sites to get an idea of inputs and out-
puts that are available to you should give you plenty of ideas. Here
are a few sites:

makezine.com/category/technology/arduino/
learn.adafruit.com/category/learn-arduino
learn.sparkfun.com/tutorials/tags/arduino?page=all
playground.arduino.cc/Projects/Ideas

Outline Your Project
Once you have an idea for a project, try sketching or writing out the
system that you are thinking of building. This can be as simple as
making a list containing the components you are planning to use
and the type of behavior you will need in the code. It usually helps
to be able to break your project down into inputs, outputs, and
code. Remember, your project will always be a system, with inputs,
outputs, and code that controls behavior running on the Arduino
(Figure 9.1).

Break It Down
Breaking your project down into component parts, starting with
the simplest section that you already know how to do, will help you
get the work underway. Tackling each part separately, rather than
facing the entire scope, makes it easier to get the job done. Also,
when working initially, simplifying your idea will help you realize it; it’s
always possible to enhance and refine it in later versions.

http://makezine.com/category/technology/arduino/
http://learn.adafruit.com/category/learn-arduino
http://learn.sparkfun.com/tutorials/tags/arduino?page=all
http://playground.arduino.cc/Projects/Ideas

Building Your Projects 335

sketc
h

plan

break it down

Re-iterate!!

combine the pieces

Figure 9.1: Planning notes can help direct your project.

As you start building your project, what do you do if something
isn’t working? Throughout this book we have emphasized the impor-
tance of debugging, both your code and your circuits (Figure 9.2).
Be patient and apply a methodical approach to examining each

Learn Electronics with Arduino336

element of your project. If you get an error in the code editor of
the IDE, note the exact language and type it into a search engine.
You will probably find that you are not the first person to have this
problem. The forums on the Arduino website (forum.arduino.cc) are a
great place to search for answers to problems and post questions.
Arduino Stack Exchange (arduino.stackexchange.com) is another place
to look.

Are power and ground connected correctly?
Are the components in the correct row of tie points?

Did I choose the right serial port?Did I verify my code to check for errors?
Are my wires firmly pushed in to the breadboard?

Figure 9.2: Avoid the frustrations of broken projects—use debugging.

User Testing
Once you have a working version or prototype of your project, share
it with someone. Explain the project to them and have them test
out your device. When building a project, it is easy to make a lot of

http://arduino.stackexchange.com
http://forum.arduino.cc

Building Your Projects 337

assumptions about how someone will see it or use your project, and
it can help to have an outside perspective in order to break some
of your assumptions. If possible, having a wide variety of people
test your project will help to make it the best possible version and
to develop your idea. If you are unsure who to approach, start with
friends and family (Figure 9.3).

Figure 9.3: Get others to try out your projects.

Reflect and Repeat
Now that you have gone through the first pass with your project, you
should feel comfortable writing notes for yourself. What went well
with your project? What improvements could be made? These notes
can help you iterate on your project and make better versions in the
future by improving on past mistakes or false assumptions.

Now that you have a basic understanding and support from
some project management techniques, let’s talk about common
genres for Arduino projects.

Learn Electronics with Arduino338

A Few Helpful Components
We don’t have enough room to get into all the varieties of sensors
and outputs that exist in the world, but we do want to mention pop-
ular choices that can help your projects spring to life.

Sensors
Here are a few commonly used sensors that can be easily incorpo-
rated into your projects.

Sensing Distance and Motion

Passive infrared sensors (PIRs; Figure 9.4) and ultrasonic rangefind-
ers (Figure 9.5) are both used to tell how far away people or objects
are from your project. They can also be used to check if someone
has walked in front of your project. Since both often give you analog
values, you can use these sensors similarly to how you employed the
photocell in Chapter 7, “Analog Values.”

Figure 9.4: Passive infrared sensor (PIR)

Building Your Projects 339

Figure 9.5: Ultrasonic sensor

Force-Sensing Resistors

Force-sensing resistors (FSRs) allow you to sense different values of
pushing or pressing down on a sensor (Figure 9.6). Since they give
analog readings, you can scale the response to move servo motors,
light up different sections, or play sounds from a speaker. FSRs are
used in gaming controllers and other hands-on interactions. FSRs
come in a variety of sensitivities, shapes (including both square and
round), and sizes.

Figure 9.6: Force-sensing resistors (FSRs) come in different shapes and sizes.

Learn Electronics with Arduino340

Other Sensors

As mentioned earlier, there are many more sensors out there that
can help extend your Arduino projects. From temperature sensors,
to microphones for measuring volume levels, to heart rate and pulse
monitors, finding the right sensor can make your project shine.

Actuators and Motors
We have shown you projects that incorporate motion by using servo
motors, but there are several other types of actuators (components
that can move something) that can make your project move in a
variety of ways. We have highlighted a few popular options next.

DC Motors

DC motors come in a variety of sizes and strengths to power even
the most stubborn projects (Figure 9.7). They often rotate only in
one direction continuously and will move faster or slower, depend-
ing on how much power is applied to them (within a safe range).
DC motors are used quite successfully to drive wheels, lift heavy
objects, and more.

Figure 9.7: DC motor

Building Your Projects 341

Stepper Motors

Stepper motors (Figure 9.8) are a more controllable type of motor
than the basic DC, which means they also require more computing
power from the Arduino to function. Rather than turning continu-
ously, stepper motors take single “steps,” some percentage of the
total rotation. This means that they can be used for accurate posi-
tioning and will both start and stop on command. Stepper motors
work quite well with the Arduino, though they often require an
H-bridge integrated circuit chip or a stepper motor driver to per-
form more complex behaviors.

Figure 9.8: Stepper motor

Solenoid

Solenoids (Figure 9.9) look quite different from the other actuators
we have talked about. Rather than creating a rotation, solenoids
are “fired” in a straight line. They have a spring attached to a metal

Learn Electronics with Arduino342

shaft that is either pushed or pulled from the central motor body
depending on their type. They are often used in musical instruments
to strike percussive or bell-like elements in order to create new
sounds.

Figure 9.9: Solenoid

Types of Projects
We’ve talked about a wide variety of projects you can build with your
Arduino, but we wanted to suggest a couple more genres of projects
with a few ideas to help you get started.

Building Your Projects 343

Home Automation
Although there are a number of products on the market, you can
build your own home automation projects using the Arduino. Pop-
ular choices for home automation projects include triggering lights,
activating fans, or turning off appliances.

Robots
Robots are always a popular choice for Arduino projects. With
a few motors and sensors, you can have a pet robot in no time.
Single-task robots are also a great choice, from robots that slice
butter to those that track objects on the floor. They can even be
built out of cardboard (Figure 9.10)!

Figure 9.10: Cardboard robot pet

Learn Electronics with Arduino344

Wearable Projects
Wearable projects include any sort of clothing, jewelry, or accesso-
ries that combine the power of physical computing with portability
and accessibility. You can use sensors to get data about your users’
pulse or build buttons right into the clothes they wear. Popular
projects use gloves, hats, T-shirts, or jewelry and sensors to trigger
musical instruments or display screens (Figure 9.11). What type of
projects can you think of that use common accessories?

Figure 9.11: Bracelets, hats, and clothing items are all popular choices.

Art Projects
Beyond the categories we have already mentioned, you can make
any sort of art project you have in mind. From auto-generated
painting devices to moving sculpture and interactive books, the
only limitation to an art project is your imagination.

Building Your Projects 345

Other Versions of the
Arduino Board
We’ve mentioned that there are many other versions of the Arduino,
which have different functionality. Here is a quick look at a few of the
other boards and what they do. There are many more.

The Arduino 101
The Arduino 101 (Figure 9.12) is an excellent choice for moving on
from the Uno, since it is the same size and has the same general
layout as the Uno. It also has Bluetooth Low Energy (BLE) connec-
tivity and a six-axis accelerometer/gyro. If you want your project to
recognize gestures, this might be a good choice. Read more about it
here: store.arduino.cc/usa/arduino-101.

Figure 9.12: The Arduino 101

http://store.arduino.cc/usa/arduino-101

Learn Electronics with Arduino346

The Arduino YÚN
Half Arduino and half Linux computer, the Arduino YÚN (Fig-
ure 9.13) will let you use WiFi and the power of an operating sys-
tem in order to accomplish complicated computing tasks. The YÚN
can be used to run Python scripts to analyze data on the Linux side
of the board, with the Arduino handling inputs and outputs that
respond to that information. It has a slot for an SD card, and both
WiFi and Ethernet connectivity built in. More information can be
found here: store.arduino.cc/usa/arduino-yun.

Figure 9.13: The Arduino YÚN

The Lilypad Arduino
As mentioned in the “Wearable Projects” section, sometimes you
want the ability to attach an Arduino to a garment meant to be
worn, and the Arduino Uno can be a bit clunky. The Lilypad Arduino
is great because not only is it flat and less conspicuous, but it can

http://store.arduino.cc/usa/arduino-yun

Building Your Projects 347

also use conductive thread in place of wires. This will let you sew your
sensors and Arduino directly into the fabric of the project. There are
several versions of the Lilypad; Figure 9.14 shows a Lilypad Arduino
Main Board.

Figure 9.14: Lilypad Arduino Main Board

Other Arduino Boards
Although it’s beyond the scope of this book to go into every model
in detail, we would like to mention a few more boards. The Mega
2560 has 54 digital input/output pins and 16 analog input pins; it
is suitable for larger projects. The Leonardo has built-in USB com-
munication, so you can plug in a keyboard and mouse directly. The
Micro is the smallest board in the Arduino family, making it appro-
priate for embedding inside projects. Like the Leonardo, it supports
USB communication. The MKR ZERO is a smaller board designed to
work with audio applications. The MKR1000 has WiFi connectivity

Learn Electronics with Arduino348

and a built-in rechargeable lithium-polymer battery. The Gemma,
developed by Adafruit, is another board designed to be used in
wearables.

Arduino Shields
In addition to the various Arduino boards, there are a wide variety
of branded and third-party “shields” that attach to the top of the
Arduino and expand its functionality. These include adding

▨▨ SD card support in order to save data

▨▨ Sound file support for playing back recorded audio

▨▨ Support for controlling motors

and much more.

At arduino.cc/en/Main/Products, you’ll find a chart that links to
details and technical specifications on each model and on some of
the shields that are available.

Document Your Project
and Share It!
One of the best things about open source projects is seeing what
others have come up with, and now it’s your turn to share your proj-
ects with the world. Here are a few tips that can separate your proj-
ect from other projects online.

Take Good Photos
One frustration that often pops up for DIY physical computing proj-
ects is that it can be hard to see what is happening in a project pho-
tograph. We recommend that you have bright, consistent lighting
and a plain background underneath your project.

http://arduino.cc/en/Main/Products

Building Your Projects 349

If you are planning on taking photographs of the wiring, it is extra
important that you color-code your wires and avoid crossing them
too often. Otherwise, you run the risk of having your project look like
spaghetti (Figure 9.15)!

Figure 9.15: Spaghetti wiring; this is not an actual circuit!

Write Up Your Project
If you had problems with some section of code or a certain con-
cept, chances are that the next person who tries to make the same
idea (or something similar) will stumble onto the same issues that
you did. Writing a summary of your experience building a project or
the steps you took to make your project will help you remember the
tricks you have learned for future projects—and may save someone
else from a huge headache.

Share Your Project
Though not required, it can be a great help to share what you come
up with for others to see. Many websites, such as makershare.com

http://makershare.com

Learn Electronics with Arduino350

and instructables.com, have the option to post your own projects and
include step-by-step instructions to make them. This is one of the
strongest parts about Arduino being open sourced—the knowledge
is free to be shared by everyone.

Summary
We’ve reached the end of this book. In the earlier chapters, you were
introduced to basic electronic theory and practice as well as pro-
gramming concepts. We gave you a few tips on moving forward with
your own projects in this chapter. You are now well on your way to
building your own fabulous Arduino projects.

http://instructables.com

If you have just purchased a resistor, it will generally
come with some sort of label, but that doesn’t help if

you find your resistor sitting unaccompanied on a table or
in your parts box. Fortunately, every resistor has a set of
color bands printed on its casing that tells you the value
of the resistor. While there are resistors with six, three, or
even one band, the most commonly found resistors by far
have four bands, and we are looking at that type in this
appendix.

Identifying Resistors by
Color Bands
Let’s take a close look at a resistor in Figure A.1. A resistor has two
wire leads and a body with color bands on it.

body

wire leads
Figure A.1: A resistor

Appendix:
Reading
Resistor Codes A

Learn Electronics with Arduino352

Orienting the Resistor
Not only do the colors of the bands matter, but also the order in
which the colors appear. How do you know what each color means?
The first step is to orient your resistor in the correct direction, as
shown in Figure A.2. On one side of the resistor, the band color will
be either silver or gold. This band should be placed on the right-
hand side of the resistor. Look for the silver or gold band on the
resistor body and place it on the right-hand side.

When reading resistors, put the
gold (or silver) band on the
right-hand side

Figure A.2: Orient your resistor.

Now that your resistor is oriented correctly, you can identify the
other color bands on the resistor body. We have labeled the bands
in Figure A.3 in order. The colors on each band have a particular
significance.

first
second

third

fourth

Figure A.3: Numbering the bands on the resistor

Resistor Color Chart

Figure A.4 is a standard color chart that all resistors follow. You can
find similar charts online. We’ll go over what each band means in
detail. The colors mean the same thing for all resistors.

Appendix: Reading Resistor Codes 353

1

10

100

1,000

10,000

100,000

1,000,0006

7

8

5

4

3

2

1

0

9

10% Silver

5% GoldBlack

Brown

Red

Orange

Yellow

Green

Blue

Purple

Gray

White

0

1

2

3

4

5

6

7

8

9 9

1st Digit 2nd Digit Multiplier Tolerance

2 2 x10 5%220 Ohm Resistor

what the color
bands represent on

the resistor

Figure A.4: Resistor band color chart

Decoding the Resistor

Now that you’ve seen the color chart, we’ll show you how to apply it
to a resistor.

The first band represents the most significant digit, or the first
digit in the number. For example, on our resistor in Figure A.5, the
first band is red. Looking at the color chart, you see that red on the
first band equates to the number 2.

Learn Electronics with Arduino354

Black

Brown

Red

Orange

Yellow

Green

Blue

Purple

Gray

White

0

1

2

3

4

5

6

7

8

9 9

1st Digit

The first band is red which, as we can tell
from the chart, represents the number ‘2’

Figure A.5: The first band

The second band signifies the second most significant digit. On
this resistor, the second band is also red. As you see in Figure A.6,
the chart indicates again that the number 2 is represented by the
red color of your second band.

6

7

8

5

4

3

2

1

0

9

Black

Brown

Red

Orange

Yellow

Green

Blue

Purple

Gray

White

2nd Digit

The second band is also red, and therefore again
represents the number ‘2’ as shown in the chart.

 Figure A.6: The second band

Appendix: Reading Resistor Codes 355

The first two bands taken together give us the number 22.
The first two bands on a resistor will always represent a num-
ber between 10 and 99. (We’ll explain what these numbers mean
shortly.) The third digit is a little bit different.

The third band, shown in Figure A.7, has another meaning. Rather
than representing a number like the first two bands, the third band
represents a multiplier. This band multiplies the values on the first
two bands by a power of 10. We can see this in the third row of the
chart in Figure A.4. For this resistor, the band is brown, which the
chart tells us means a multiplier of 10, or 10 to the first power. Now
that we know these three values, we can calculate the resistor’s
total resistance using the simple formula shown in Figure A.8: the
first two digits times the multiplier equals the resistance (in ohms).

1

10

100

1,000

10,000

100,000

1,000,000

Black

Brown

Red

Orange

Yellow

Green

Blue

Multiplier

The third band, which represents the multiplier, is brown,
which means we multiply the first two numbers by 10.

Figure A.7: The third band

first band, second band times the third band total resistance value

Figure A.8: Calculating the value of a resistor

This means that our red-red-brown resistor is a 220-ohm resis-
tor. In fact, all red-red-brown resistors have a value of 220 ohms.

Learn Electronics with Arduino356

The fourth band of our resistor, Figure A.9, represents the resis-
tor’s tolerance or possible range of accuracy. With a gold band,
the accuracy is plus or minus 5 percent, which means that our
resistor could be as high as 231 ohms (220n1.05) or as low as 209
(220n0.95). (This variation is caused by imperfections in the resis-
tor’s manufacturing process.)

fourth band = tolerance

10% Silver

5% Gold

Tolerance

Figure A.9: The fourth band

Since the fourth band is always going to be gold or silver, and
these are not colors any of the other bands use, we can always use
the fourth band to orient our resistor correctly.

QUESTIONS?
Q: Are the band colors universal, and will I have to remember what
each color means?

A: All resistors use the same standard color codes we have talked
about here regardless of the manufacturer. You don’t have to mem-
orize them; you can easily find the color information online, and there
are a number of free smartphone apps for all the platforms.

Q: What if the bands are hard to see or they have been painted over
or erased?

A: If your resistors are missing the color bands, you can always use
a multimeter to confirm the resistance value.

Appendix: Reading Resistor Codes 357

Q: How accurate do I need to be with my resistors?

A: Good question. Hobby electronics and electrical components are
not super sensitive to minor variations in resistance. The difference
between 209 ohms and 231 ohms is not enough to cause any issue
with your LED. However, using a resistor with a much higher rating
(double or more) or a much smaller rating (half or less) is enough to
cause issues.

Note Although the four-band resistor is very common, some
resistors have a different number of bands. The colors indicate the
same numbers in the first three bands, but the tolerance values are
calculated differently.

Analyzing the Color Bands on
Another Resistor
Let’s look at another resistor and evaluate its color bands to figure
out its total resistance value. The resistor in Figure A.10 has the color
bands brown, black, orange, and gold.

brown

black
orange gold

Figure A.10: A resistor with the bands labeled

Learn Electronics with Arduino358

The first step is to orient the resistor correctly. To do that, make
sure that the gold band is on the right-hand side (Figure A.11).

gold band

oriented correctly
Figure A.11: Orienting the resistor

Looking at the Color Chart Again
Refer back to Figure A.4 to reference the color values. You can
always look up the chart whenever you need to calculate a resis-
tance value.

Reading the Bands

The first band is brown, so we can look at the color chart and know
that the first digit is a 1 (Figure A.12).

first band: brown = 1
Figure A.12: First band

Appendix: Reading Resistor Codes 359

The next color band on the resistor is black, which makes the sec-
ond digit a 0 (Figure A.13).

second band: black = 0
Figure A.13: Second band

The third band is orange, which means that the value of the
multiplier is 1000 (Figure A.14).

third band: orange = 1,000
Figure A.14: Third band

This means that our resistor value is 10 times 1000. That means
our resistor is 10,000 ohms, or more commonly seen as 10 kΩ (Fig-
ure A.15).

One Zero times 1000

Figure A.15: Calculating the resistance in our 10 kΩ resistor using the color bands

361

Index

Numbers
3.3V port, 142
5V power and GND

versus 3.3V port, 142
attaching to breadboard, 121, 125

8 ohm speaker
adding, 220–221
adding to circuit, 278–282
arguments, 226–227
circuit, 32
code, 221–222
delay() function, 226–227
digitalWrite() function,

226–227
illustration, 8
loop() code, 223–224
note chart, 225
playing notes, 239
setup(), 222–223
tone() and notone(), 224–227

9-12-volt power supply, 5, 22
9V battery. See also batteries

attaching cap, 53
ground terminal, 52
illustration, 5
multimeter, 62
plus (+) and minus (-) terminals, 52
power terminal, 52
top and side, 53

9-volt battery cap or holder, 5–6
10K potentiometer, 5
330-ohm resistor, 48–49, 58. See also

resistors

Symbols
-- operator, 312
//, using with comments, 100–101

/* and */, using with comments,
100–101

/= operator, 312
++ operator, 312
+= operator, 312
−= operator, 312
*= operator, 312
{} (curly braces)

for loop, 305
using, 115
using with setup(), 104

> (greater than) operator, 310
>= (greater than or equal to) operator,

310
= = (is equal to) operator, 310
!= (is not equal to) operator, 310,

324–325
< (less than) operator, 310
<= (less than or equal to) operator, 310
&& (logical and) operator, 329
|| (logical or) operator, 329
− (minus) sign, 43
! (not) operator, 329
() (parentheses) in functions, 226, 305
+ (plus) sign, 44
; (semicolon) in code, 105–106
\t (tab), 277

A
AC adapter, output ratings, 162
AC and DC current, 146–147
actuators and motors, 340–342
Adafruit Industries, 12–13
addition operators, 311
amperage

explained, 159–160
warning, 166

analog data, 291–292

Learn Electronics with Arduino362

analog input
adjusting values, 262–263
analogRead(), 261–262
analogWrite() function,

264–265
map(), 262–263
potentiometer values, 259–261
scaling values for ranges, 263
voltage-to-analog conversion, 262

analog input pins
analogWrite(), 264–265
features, 244–246
using, 244–245
writing values, 264–265

analog pins, 16, 18–19
analog values. See also PWM (pulse

width modulation)
as output, 266–268
overview, 241–242
potentiometer, 245
potentiometer circuit, 243

analog versus digital information, 242
analogRead() function, 265
analog-to-digital conversion, 260
analogWrite() function, 264–265, 268
anode and cathode

illustration, 9
symbols, 39, 41–42

Arduino. See also Uno version
app, 79
boards, 347–348
computer connection, 82–83
features, 1–2
flowchart, 76
forums, 336
functions and boards, 2
hardware version, 85
license agreement, 81
logo, 1
parts, 16
plugging into computer, 20–26
powering up, 22–26
programming language, 99
schematic, 115–117
setup() and loop(), 99
shields, 348
unplugging during changes, 23
USB port, 20–21
versions, 2, 4, 11

Arduino 101, 345
Arduino IDE. See IDE (integrated

development environment)
Arduino team, kits, 13
Arduino YÚN, 346
arguments, 226–227. See also

functions
art projects, 344
ATmega328P, black chip, 18–19

B
batteries. See also 9V battery

current, 147
LED bulb flashlight, 52–54
positive and negative sides, 55
symbol, 39, 40–42
voltage, current, resistance, 176

battery cap, 5–6, 48, 52
begin() function, LEA7_

AnalogInOutSerial sketch, 258
Blink sketch. See also LEA4_Blink

sketch
debugging, 96–98
opening, 91–92, 95

blinking LEDs. See LEDs
boards, 347–348
Boolean operators, 329–331. See also

operators
breadboard

5V power and GND, 121
benefits, 47
circuits attached, 74
connecting components, 7
connecting to, 119–121
connections, 46–47
labeling, 119
LED bulb flashlight, 42–47
pins, 120
power and ground buses, 44–45
power and ground connection, 57
power and ground pins, 120
versus soldering iron, 10–11
tie points, 44, 46
trench, 46
using, 42–43
warning, 44
“x-ray” view, 44

brightness value, translating, 251–254

Index 363

built-in LEDs, Uno version, 18
button circuit, building, 200. See also

circuits
button keyboard, three-tone, 194
Button sketch, uploading, 204–205
buttons. See also digital input; three-

button “Instrument” loop()
function; two-button circuit

adding, 201–202, 233–234
adding to breadboard, 202
adding to pin, 204
diagrams, 201–202
functionality, 237–238
ground connection, 203
identifying, 90
LED circuit, 198
LED on and off, 205–206
parts, 197–198
power connection, 203
pushing, 238
resistor connection, 203
schematic, 198–199
switches, 202, 206
uploading sketch, 204

C
calling functions, 106
cardboard robot circuit, 32
cathode and anode, 9
Christmas lights, series arrangement,

190
circuit loops, debugging, 58–59
circuits. See also button circuit;

electricity; potentiometer circuit;
short circuit

3.3V, 142
Arduino connected to breadboard,

119–121
attached to breadboard, 74
building, 49–52, 121–122, 140–142
component arrangement, 180
components, 35–36
computer attachment, 123–124
conductive lines, 34
continuity, 58–59
continuity testing, 69–70, 144
current, 161–162
debugging, 57–60, 143–144

diagramming, 39–40
examples, 32
features, 34
flow, 33
LED bulb flashlight, 48–52
LED connection, 122–123
LEDs in parallel, 182–183
Ohm’s law, 178
parts and tools, 48, 119, 140
PCBs (printed circuit boards),

34–35
pin and resistor, 121–122
pin connected to resistor, 121–122
power and ground pins, 141–142
powering, 140–141
schematic, 116–118, 141
tracks, 33
voltage measurement, 157
warning, 118, 120

code. See also comments
in circuit, 74
explained, 76–77
instructions, 105
uploading, 75

code window, 88–90
comments. See also code

LEA4_Blink sketch, 99
using, 99–101, 108

comparison operators, 309–310
components. See also parts

actuators and motors, 340–342
arranging in circuits, 180
getting information, 26
parallel, 180–186
pressing into place, 49
schematic symbols, 40
sensors, 338–340
series, 180–181, 186–192

components in parallel. See parallel
components in series. See series
compound operators, 310–311
computer, connecting Arduino, 82–83
conditional statements

best practices, 331
else statement, 218–220
explained, 216–218
if, 217
LEA6_Button sketch, 215
loop() code, 215–218

Learn Electronics with Arduino364

nesting, 220
reviewing, 237

conductive lines, 34, 36
conductors and insulators, 145–146
const, variables, 212
continuity testing, 58–59, 65–70, 144
curly braces ({})

for loop, 305
using, 115
using with setup(), 104

current. See also high current; Ohm’s
law

AC and DC, 146–147
in circuits, 161–162
circuits, 161–162
electrical model, 161
explained, 159–160, 175
flow, 159–161
impact on batteries, 176
impact on LEDs, 176
impact on resistors, 176
input, 163
limit, 162–163
limit for Arduino, 162–163
measuring, 160, 163–164, 167
multimeter adjustment, 164–167
review, 173–177
series and parallel, 192
symbol, 174–175, 177
voltage and resistance, 148–149,

167, 173–180
current flow, 159–161, 167
custom functions. See also functions

calling, 327–328
creating, 325–327
using, 331

D
data sheets, 28–29
DC current, symbol, 159
DC motors, 340
DC voltage

measuring, 154
symbols, 175

debugging
Blink sketch, 96–98
circuits, 57–60, 143–145
explained, 96

LED bulb flashlight, 69–70
projects, 335–336
unblinking LED, 96–98

delay() function, 111–112, 114, 226–227
Digi-Key Electronics, 12
digital input. See also buttons

adding button, 201–202
button attachment, 204
button circuit, 200
button connection, 203
Button sketch, 204–205
HIGH and LOW states, 213–214, 241
LED off and on, 205–206
parts, 197–198
review, 213–214
schematics, 198–199
states, 213–214

digital inputs and outputs, overview,
195–197

digital I/O pins, 16, 18–19
digital pins, treating like output, 107
digital versus analog information, 242
digitalRead() function, 265
digitalWrite() function, 110–112, 115,

226–227, 265
distance and motion, sensing, 338
division operator, 311

E
electrical connection, testing, 65–66
electrical ground, 152
electrical model

current, 161
resistors, 169
schematic, 150–151

electrical properties
impact of changes, 176–177
series and parallel, 192
symbols, 174

electrical properties, testing, 139–140
electricity. See also circuits

AC and DC current, 146–147
behavior, 145–146
conductive lines, 36
flow, 150
flow through circuit, 138, 251–254
impact on components, 174–176
LED bulb flashlight, 55–56

Index 365

measuring with multimeter, 139–140
overview, 144–145
properties, 138
resources, 148
warnings, 147, 154
water tank analogy, 148–149, 174
zero point, 152

electromotive force, 150
else if statement, 220, 230–232
else statement, 218–220
end = ground symbol, 39
errors, checking in code, 77, 88–89

F
flags

turning, 314–316
waving, 291–292, 300–301,

320–322, 331
flow

and current, 159–160
restricting, 167–173

flowchart, 76
for loop. See also loop() function

condition testing, 307–308
ending, 308
flowchart, 306
flowchart with code, 309
initialization, 307
overview, 304–309
in sketch, 312–313

FSRs (force-sensing resistors), 339
functions. See also arguments; custom

functions
calling, 106
declaring, 326
defined, 102, 115, 257, 325
naming, 327
void, 327

G
GND and 5V power, attaching to

breadboard, 121. See also power
and ground pins

greater than (>) operator, 310
greater than or equal to (>=)

operator, 310
ground terminal, 56

H
hardware

open source, 3
version, 85

HIGH and LOW states, digital input,
213–214, 241

high current, 167. See also current
home automation projects, 343

I
IDE (integrated development

environment)
Applications folder, 79
buttons, 89–90
closing sketch windows, 84
code window, 88–90
components, 77
configuring, 84–88
contents, 76
downloading, 76, 78–82
errors and information window, 89
explained, 75
interface, 83–84
message areas, 89

if in conditional statements, 217
indicator LED, On Uno version, 18
information window, 77, 89
input and output pins, 16, 18–19. See

digital I/O
inputs, 195–197
inputs and outputs, 324
instructions in code, 105
insulators and conductors, 145–146
interactivity

three-tone button keyboard,
194–195

turning flag, 314–316
is equal to (= =) operator, 310
is not equal to (!=) operator, 310,

324–325

J
Jameco Electronics, 12
jumper to ground, LED bulb flashlight, 51
jumper wires

creating, 10
illustration, 8

Learn Electronics with Arduino366

LED bulb flashlight, 48
LED to ground, 123
pin to breadboard, 121

K
kits, 13

L
LEA4_Blink sketch. See also Blink

sketch
button circuit, 200
code, 99
comments, 99–101
running, 95–96
saving, 92
schematic for circuit, 117
screenshot, 98–99

LEA4_SOS sketch. See also SOS signal
light

and circuit, 126
downloading, 135
loop() code, 128
saving and renaming, 126–128
setup() code, 127–128

LEA6_1_tonebutton sketch, 221
LEA6_2_tonebuttons sketch

buttons, 233–234
editing, 229–230
else if loop, 230–232

LEA6_3_tonebuttons sketch, 234–236
LEA6_Button sketch

code, 206–207
code and variables, 207–212
code initialization, 207–208
conditional statement, 216–220
else statement, 218–220
loop() code, 215–216
saving, 204
setup(), 212–213
variable initialization, 207–208
variables, 206–208

LEA7_AnalogInOutSerial sketch
analogInPin, 255
analogOutPin, 256
begin() function, 258
code, 254
initialization, 255–257

loop() code, 258–259
outputValue, 257
saving, 250
sensorValue, 256
setup() code, 257–258
summary, 277–278

LEA7_VariableResistorTone
code, 279–280
features, 280–281

LEA8_2_servos sketch
code, 322
comparison operator, 324–325
custom functions, 325–328
initialization, 323
loop() code, 324–325
setup() function, 323–324
turnServos(), 328–330

LEA8_Knob sketch. See also servo
motors

code, 316
initialization, 317–318
loop() code, 318–319
saving, 315
setup() code, 318

LEA8_Sweep sketch
initialization, 302–303
library, 302
loop() code, 304
objects, 303
opening and saving, 300
overview, 301
setup() code, 303–304

LED bulb flashlight
330-ohm resistor, 48–49
battery, 52–54
battery cap, 52
breadboard, 42–47
circuit, 48–52
debugging circuit, 57–60, 69–70
electricity, 55–56
jumper to ground, 51
lighting up, 53–54
multimeter, 60–69
project description, 36–37
schematic, 37–42

LED circuit, buttons, 198
LEDs

adding to circuit, 122
anode and cathode, 9, 58

Index 367

blinking, 25, 95, 108
built-in, 16, 19
data sheet, 28–29
debugging unblinking, 96–98, 124
dimming and brightening, 250
features, 8–9
illustration, 7
On indicator, 16
LED bulb flashlight, 48, 50–51
orientation, 58
in parallel, 182–183
positive and negative leads, 58
symbol, 38–42
turning on, 22
voltage, current, resistance, 176

Leonardo board, 347
less than (<) operator, 310
less than or equal to (<=) operator, 310
libraries, defined, 302
light switches, flipping, 266
lights, dimming, 250–251
Lilypad Arduino, 346–347
logical and (&&) operator, 329
logical comparison operators, 310
logical or (||) operator, 329
loop() function, 99, 109–115. See also

for loop; setup() function
8 ohm speaker, 223–224
code, 113–114
conditional statements, 215–216
contents, 110
digitalWrite() and delay(),

111–112
LEA4_Blink sketch, 99
LEA4_SOS sketch, 128
mini-keyboard instrument,

230–232
running, 110
SOS signal light, 132–134

loops, types, 313

M
Macs

downloading IDE, 78–79
port selection, 86

Maker Shed, 12–13
map() function, 262–264
Mega 2560 board, 347

menus, 77
message areas, 77, 89
message window, 94–95
metal, warning about touching, 154
meter. See multimeter
Micro board, 347
Micro Center, 12
mini-keyboard instrument

adding buttons, 233–234
button attachment, 229
else if statement, 230–232
LEA6_2_tonebuttons, 229–230
loop() code, 230–232
parts, 228
playing, 236
pushing buttons, 232
testing code, 232
tone() function, 232
two-button circuit, 228

mini-keyboard instrument, playing, 238
minus (−) sign, 43
MKR ZERO board, 347
MKR1000 board, 347–348
momentary switches/buttons, 5, 7
Morse code, 125
motion and distance, sensing, 338
motor circuit, 32
motors and actuators, 340–342. See

also servo motors
Mouser Electronics, 12
multimeter

adjusting, 164–166
continuity testing, 59, 65–69
dial, 63, 67
features, 60
high current, 167
illustration, 9
LED bulb flashlight, 60–69
measuring DC voltage, 154–156
measuring electrical properties,

139–140
measuring resistance, 170–173
parallel, 184–185
parts, 61–62
ports, 64–65
powering, 62
preserving battery, 156
probes, 63–64, 67–68, 70, 166
protecting, 166

Learn Electronics with Arduino368

series, 191–192
setting, 166
turning off, 62
types, 61
warning, 166

multiplication operator, 311

N
needle-nose pliers, 10, 48
New button, 90
not (!) operator, 329
note chart, 225
notes, playing, 239

O
objects, explained, 303
ohms, symbol, 168
Ohm’s law, 138, 177–180. See also

current; resistance; voltage
ON indicator LED, 16, 18–19
Open button, 90
open source hardware, 3
operators, 309–311. See also Boolean

operators
output, treating pins as, 107, 109
outputs, 197

P
parallel

components, 185–186
LEDs, 182–183
multimeter, 184–185
order of components, 180

parentheses (()) in functions, 226, 305
parts. See also components; tools

Arduino, 16
numbers and store guides, 27
obtaining, 12
placing in box, 27
sorting, 26–27

parts list, 5
pausing Arduino, 111–112, 114, 226–227
PCBs (printed circuit boards), 34–35
photographing projects, 348–349
photoresistor

adding, 282–288

circuit, 32
features, 7
illustration, 8
and resistor, 284
shining light, 286

physical computing, 3
pin and resistor, connecting, 121–122
pinMode() function, calling, 106–109
pins

declaring, 109
treating like output, 107
using on breadboard, 120

PIRs (passive infrared sensors), 338
pitch, changing, 281, 285–286
planning notes, 335
pliers, needle-nose, 10
plus (+) and minus (-) terminals, 9V

battery, 52
plus (+) sign, 44
ports, specifying, 85–88
potential and voltage, 149–153
potentiometer

adding, 248–249, 314–316
analog-to-digital conversion, 260
brightness value, 251–254
component drawing, 245
dimming lights, 250
illustration, 7
pins, 248
schematic, 245
values, 259–261
x-ray, 285

potentiometer circuit. See also circuits
building, 247
completion, 246
LED attached to Pin 9, 247
parts, 247
role of sketch, 251–254
schematic, 243

power
battery, 56
terminology, 55

power adapter, 7
power and ground

buses, 44–45
checking connections, 57
symbols, 40

power and ground pins, 16, 18–19,
141–142. See also GND and 5V power

Index 369

power port, 16–17
power supply, 22–26, 162
printing to serial monitor, 273–276
programming language, reference

guide, 115
programs. See sketches
project management, 334–337
projects

documenting and sharing, 348–350
types, 342–344
writing up, 349

prototyping, 3, 42–43
pushbutton, 7
pushing buttons, 238
PWM (pulse width modulation),

265–268. See also analog values

R
Reset button, 16–17, 98
resistance. See also Ohm’s law

calculating, 359
current and voltage, 173–177
defined, 168
explained, 175–176
impact on batteries, 176
impact on LEDs, 176
impact on resistors, 176
measuring, 168
multimeter measurement, 170–173
restricting flow, 167–169
review, 173–177
series and parallel, 192
symbol, 174–175, 177
voltage and current, 148–149,

177–180
water tank analogy, 168

resistors. See also 330-ohm resistor
accuracy, 357
bands, 354–356, 358–359
body and wire leads, 351
buying, 54
checking, 58
color bands, 357–358
color chart, 352–353, 358–359
connecting to pin, 121–122
current and voltage, 173
decoding, 353–356
electrical model, 169

features, 169–170
illustration, 7
numbering bands, 352
orienting, 352, 358
parallel arrangement, 181
and photoresistors, 284
series arrangement, 181
symbol, 39–42
value calculation, 355
voltage, current, resistance, 176
voltage measurement, 156

robots, 343

S
Save button, 77, 90
saving sketches, 92
schematics. See also symbols

annotation, 119
Arduino, 116–117
and board, 116
buttons, 198–199
circuits, 116–118, 141
complexity, 198–199
drawing, 41–42
electrical model, 150–151
explained, 37
LED bulb flashlight, 37–42
LEDs in series, 186
potentiometer, 245
potentiometer circuit, 243
reading, 38
servo circuit, 296, 320

semicolon (;) in code, 105–106
sensors, 338–340
serial code, 272–273
serial communication

explained, 269–270
input and output, 269
loop() and delay(), 276
strings, 272–273, 277

serial functions, 277
serial monitor

printing to, 273–276
running, 271
using, 270–272

serial output, reading, 287–288
series

components, 189–190

Learn Electronics with Arduino370

LED circuit, 186–187
metering voltage of components,

187–188
multimeter, 191–192
order of components, 180–181

series arrangement, Christmas lights,
190

server, 8
servo circuit

attaching, 298–300
attaching computer, 300–301
connector, 298
flag attached to horn, 297
parts, 295–296
preparing, 296–298
removing horn, 297
schematic and drawing, 296
Sweep sketch, 300–301

servo motors, 8, 287–288. See also
LEA8_Knob sketch; motors and
actuators

adding, 320–322
analog data, 291–292
annotation, 294
degrees of rotation, 290
horns, 294
moving, 312–313
online vendors, 293
parts, 292–295
positional rotation, 291–292
turning on, 328–330
using, 289
wire colors, 295

setup() function. See also loop()
function

8 ohm speaker, 222–223
curly braces ({}), 104
happening once, 107–108
initial conditions, 104–108
LEA4_Blink sketch, 99
LEA4_SOS sketch, 127–128
LEA6_Button sketch, 212–213
and loop(), 101–108, 113–114
pin mode, 108
positioning, 108

short circuit, 154. See also circuits
sketch window, 91
sketches

explained, 83, 90

message window, 94–95
opening, 90–92
running, 95
saving, 90, 92
status bar, 94–95
uploading, 93–96
verifying, 93–94

soldering iron versus breadboard, 10–11
solenoids, 341–342
sorting parts, 26–27
SOS signal light. See also LEA4_SOS

sketch
creating, 125–126
flashes on and off, 128–132, 134
loop() code, 132–134
saving and renaming sketch,

126–128
spaghetti wiring, 349
SparkFun Electronics, 12
speaker. See 8 ohm speaker
start = positive, symbol, 39
statements, ending in code, 106
status bar, 94
stepper motors, 341
strings, 272–273, 277
subtraction operators, 311
surge protector, 25
Sweep sketch. See LEA8_Sweep sketch
switches

and buttons, 206
buttons, 202
flipping, 266
functionality, 238
using, 196–197

symbols. See also schematics
anode and cathode, 39, 41–42
battery, 39–42
components, 40
current, 174–175, 177
DC current, 159
DC voltage, 175
electrical properties, 174
end = ground, 39
LEDs, 38–42
ohms, 168
parallel arrangement, 181
power and ground, 40
resistance, 174–177
resistors, 39–42

Index 371

series arrangement, 181
start = positive, 39
voltage, 174–175, 177

T
tab (\t), creating, 277
testing, continuity, 69–70
text, representing, 273
theremin, playing, 243, 285–286
three-button “Instrument” loop()

function, 235–236. See also buttons
tie points

breadboard, 44, 46
debugging, 58–59

tone() and notone() functions, 224–
227, 239

tools, 9–11. See also parts
trench, 46
turnServos(), 328–330
two-button circuit, 228. See also

buttons
tx and rx pins, 18–19

U
ultrasonic sensors, 339
Uno version. See also Arduino

analog pins, 18
built-in LEDs, 18
illustration, 2, 4
On indicator LED, 18
input and output pins, 18
left side, 17
parts, 16
power and ground pins, 18
power port, 17
reset button, 17
right side, 18
tx and rx pins, 18
USB port, 17
voltage regulator, 17–18

unplugging Arduino, 23
Upload button, 89–90, 94
uploading, 75
URLs. See websites
USB A-B cable, 5–6
USB port

Arduino, 20–21

locating, 16
Uno version, 17

user testing, 336–337

V
values

setting, 110
testing equality, 217

variables
const, 212
declaring, 208–211
explained, 208
LEA6_Button sketch, 206–207
names, 209
qualifiers, 211
reviewing, 238–239
types, 210–211
values, 209–210

Verify button, 88–90, 93–94
void in functions, 327
voltage. See also Ohm’s law

checking, 153–157
checking across components,

156–157, 159
components in parallel,

185–186
components in series, 189–190
converting to analog reading, 260
current and resistance, 148–149,

173–180
defined, 152
determining, 179
explained, 175
impact on batteries, 176
impact on LEDs, 176
impact on resistors, 176
LEDs in parallel, 183–184
measuring, 150–151, 153–156
metering components in series,

187–188
metering on breadboard, 155
potential, 149–153
review, 173–177
scaled measurement, 260
series and parallel, 192
symbol, 174, 177
symbols, 175
use by components, 159

Learn Electronics with Arduino372

values, 152–153, 189
water analogy, 150

voltage divider, 284
voltage drop, 157–159
voltage potential, 149–152
voltage regulator, 16–18
voltage value, mapping to, 264
voltage-to-analog conversion, 262

W
water tank analogy

electricity, 148–149, 174
resistance, 168
voltage, 150

wearable projects, 344
websites

Adafruit Industries, 12–13
Arduino 101, 345
Arduino programming language, 115
Arduino YÚN, 346
components, 12
Digi-Key Electronics, 12

forums, 336
IDE (integrated development

environment), 76, 78, 80
inputs and outputs, 324
Jameco Electronics, 12
kits, 13
Maker Shed, 12–13
Micro Center, 12
Mouser Electronics, 12
note chart, 225
servo motors, 287–288
sharing projects, 349–350
SparkFun Electronics, 12

Windows PC
downloading IDE, 80–82
port selection, 87–88

wire strippers, 10
words, sending to serial monitor,

272–273

Z
zero volts, 152

	Contents
	Acknowledgments
	About the Authors
	Preface
	Chapter 1: Introduction to Arduino
	Chapter 2: Your Arduino
	Chapter 3: Meet the Circuit
	Chapter 4: Programming the Arduino
	Chapter 5: Electricity and Metering
	Chapter 6: Switches, LEDs, and More
	Chapter 7: Analog Values
	Chapter 8: Servo Motors
	Chapter 9: Building Your Projects
	Appendix: Reading Resistor Codes
	Index

